Simultaneous parameter identification and discrimination of the nonparametric structure of hybrid semi-parametric models

被引:25
|
作者
Willis, Mark J. [1 ]
von Stosch, Moritz [1 ]
机构
[1] Univ Newcastle, Sch Chem Engn & Adv Mat, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
关键词
Hybrid semi-parametric modelling; Sparse regression; Mixed integer linear programming; Fed-batch (bio) chemical reactors; INCREMENTAL IDENTIFICATION; KNOWLEDGE; SYSTEMS;
D O I
10.1016/j.compchemeng.2017.05.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work, a hybrid semi-parametric modelling framework implemented using mixed integer linear programming (MILP) is used to extract (coupled) nonlinear ordinary differential equations (ODEs) from process data. Applied to fed-batch (bio) chemical reaction syftems, unknown (or partially known) system connectivity and/or reaction kinetics are represented using a multivariate rational function (MRF) superstructure. The MRF's are embedded within an ODE framework which is used to incorporate known system model characteristics. Using derivative estimation, the ODEs are decoupled and a MILP algorithm is then used to identify appropriate constitutive model terms using sparse regression. Superstructure sparsity is promoted using a L-0- pseudo norm penalty, i.e. the cardinality of the model parameter vector, enabling the simultaneous yet decoupled identification of the parameters and model structure discrimination. Using simulated data, two case studies demonstrate a principled approach to hybrid model development, distilling unknown elements of (bio) chemical model structures from process data. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:366 / 376
页数:11
相关论文
共 50 条
  • [41] A general hybrid semi-parametric process control framework
    von Stosch, Moritz
    Oliveira, Rui
    Peres, Joana
    de Azevedo, Sebastiao Feyo
    JOURNAL OF PROCESS CONTROL, 2012, 22 (07) : 1171 - 1181
  • [42] Combining parametric, semi-parametric, and non-parametric survival models with stacked survival models
    Wey, Andrew
    Connett, John
    Rudser, Kyle
    BIOSTATISTICS, 2015, 16 (03) : 537 - 549
  • [43] Parameter Estimation for Semi-parametric Regression Model with Linear Constraints
    Xia, Yafeng
    Wu, Yongdong
    2012 THIRD INTERNATIONAL CONFERENCE ON THEORETICAL AND MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (ICTMF 2012), 2013, 38 : 355 - 359
  • [44] Semi-parametric Estimation of the Second Order Parameter in Statistics of Extremes
    M. Ivette Gomes
    Laurens de Haan
    Liang Peng
    Extremes, 2002, 5 (4) : 387 - 414
  • [45] Research and Extended of Semi-parametric Model Additional System Parameter
    Wu, Youping
    Wang, Chuntao
    Wang, Jiabang
    ADVANCES IN CIVIL AND INDUSTRIAL ENGINEERING IV, 2014, 580-583 : 2815 - 2819
  • [46] CONDITIONS FOR IDENTIFICATION IN NONPARAMETRIC AND PARAMETRIC MODELS
    ROEHRIG, CS
    ECONOMETRICA, 1988, 56 (02) : 433 - 447
  • [47] Generalized linear models in software reliability: parametric & semi-parametric approaches
    IMAG - Lab de Modelisation et Calcul, Grenoble, Germany
    IEEE Trans Reliab, 3 (463-470):
  • [48] Semi-parametric Gaussian Process for Robot System Identification
    Wu, Tingfan
    Movellan, Javier
    2012 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2012, : 725 - 731
  • [49] Identification of Nonparametric Simultaneous Equations Models With a Residual Index Structure
    Berry, Steven T.
    Haile, Philip A.
    ECONOMETRICA, 2018, 86 (01) : 289 - 315
  • [50] Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data
    AghaKouchak, Amir
    Nasrollahi, Nasrin
    WATER RESOURCES MANAGEMENT, 2010, 24 (06) : 1229 - 1249