Simultaneous parameter identification and discrimination of the nonparametric structure of hybrid semi-parametric models

被引:25
|
作者
Willis, Mark J. [1 ]
von Stosch, Moritz [1 ]
机构
[1] Univ Newcastle, Sch Chem Engn & Adv Mat, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
关键词
Hybrid semi-parametric modelling; Sparse regression; Mixed integer linear programming; Fed-batch (bio) chemical reactors; INCREMENTAL IDENTIFICATION; KNOWLEDGE; SYSTEMS;
D O I
10.1016/j.compchemeng.2017.05.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work, a hybrid semi-parametric modelling framework implemented using mixed integer linear programming (MILP) is used to extract (coupled) nonlinear ordinary differential equations (ODEs) from process data. Applied to fed-batch (bio) chemical reaction syftems, unknown (or partially known) system connectivity and/or reaction kinetics are represented using a multivariate rational function (MRF) superstructure. The MRF's are embedded within an ODE framework which is used to incorporate known system model characteristics. Using derivative estimation, the ODEs are decoupled and a MILP algorithm is then used to identify appropriate constitutive model terms using sparse regression. Superstructure sparsity is promoted using a L-0- pseudo norm penalty, i.e. the cardinality of the model parameter vector, enabling the simultaneous yet decoupled identification of the parameters and model structure discrimination. Using simulated data, two case studies demonstrate a principled approach to hybrid model development, distilling unknown elements of (bio) chemical model structures from process data. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:366 / 376
页数:11
相关论文
共 50 条
  • [31] Semi-parametric models of spatial market integration
    Barry K. Goodwin
    Matthew T. Holt
    Jeffrey P. Prestemon
    Empirical Economics, 2021, 61 : 2335 - 2361
  • [33] Specification testing in semi-parametric transformation models
    Nick Kloodt
    Natalie Neumeyer
    Ingrid Van Keilegom
    TEST, 2021, 30 : 980 - 1003
  • [34] KSPM: A Package For Kernel Semi-Parametric Models
    Schramm, Catherine
    Jacquemont, Sebastien
    Oualkacha, Karim
    Labbe, Aurelie
    Greenwood, Celia M. T.
    R JOURNAL, 2020, 12 (02): : 82 - 106
  • [35] Online Simultaneous Semi-Parametric Dynamics Model Learning
    Smith, Joshua
    Mistry, Michael
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02): : 2039 - 2046
  • [36] Estimation of absolutely continuous distributions for censored variables in two-sample nonparametric and semi-parametric models
    Pons, Odile
    BERNOULLI, 2007, 13 (01) : 92 - 113
  • [37] Nonparametric and Semi-Parametric Sensor Recovery in Multichannel Condition Monitoring Systems
    Liao, Haitao
    Sun, Jian
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2011, 8 (04) : 744 - 753
  • [38] Semi-parametric regression: Efficiency gains from modeling the nonparametric part
    Yu, Kyusang
    Mammen, Enno
    Park, Byeong U.
    BERNOULLI, 2011, 17 (02) : 736 - 748
  • [39] A METHOD FOR COMPARING SEMI-PARAMETRIC MODELS WITH PARAMETRIC MODELS IN COMPETING RISKS ANALYSIS
    WAN, J
    COMPUTERS AND BIOMEDICAL RESEARCH, 1989, 22 (06): : 565 - 574
  • [40] Hybrid Semi-parametric Modeling in Separation Processes: A Review
    McBride, Kevin
    Sanchez Medina, Edgar Ivan
    Sundmacher, Kai
    CHEMIE INGENIEUR TECHNIK, 2020, 92 (07) : 842 - 855