A new piecewise-linear stochastic resonance model

被引:2
|
作者
Wang, LinZe [1 ]
Zhao, WenLi [2 ]
机构
[1] HangZhou Dianzi Univ, Inst Comp Applicat Technol, Hangzhou, Zhejiang, Peoples R China
[2] HangZhou Dianzi Univ, Inst Mech Design & Automot, Hangzhou, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
stochastic resonance; piecewise-linear model; bistable system; noise; SYSTEMS; NOISE;
D O I
10.1109/ICSMC.2009.5345990
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We put forward a new piecewise-linear stochastic resonance(SR) model for detecting the weak signal under the strong noise background for the large parameter case. Parameters of this piecewise-linear stochastic resonance system are less correlated than those of the traditional continuous non-linear bistable system, so that it is much easier to adjust the response characteristic of this system and generate the SR under the large parameter signals case. Here we show its description equations and character parameters. Through numerically simulating its performance under the noiseless, noisy, small parameter and large parameter cases respectively, we illustrate that this system is very helpful for detecting the weak signal under the strong noise background not only for the small parameters case, but also for the large parameters case.
引用
收藏
页码:5209 / +
页数:3
相关论文
共 50 条
  • [21] Stability analysis and H∞ control for uncertain stochastic piecewise-linear systems
    Zhang, H.
    Feng, G.
    Dang, C.
    IET CONTROL THEORY AND APPLICATIONS, 2009, 3 (08): : 1059 - 1069
  • [22] Feedback synchronization of new piecewise-linear chaotic system
    Shan, Liang
    Li, Jun
    Wang, Zhi-Quan
    Nanjing Li Gong Daxue Xuebao/Journal of Nanjing University of Science and Technology, 2007, 31 (03): : 265 - 269
  • [23] A new algorithm for learning in piecewise-linear neural networks
    Gada, EF
    Atiya, AF
    Shaheen, S
    El-Dessouki, A
    NEURAL NETWORKS, 2000, 13 (4-5) : 485 - 505
  • [24] GENERALIZATION OF LINEAR AND PIECEWISE-LINEAR PROGRAMMING
    TETEREV, AG
    MATEKON, 1970, 6 (03): : 246 - 259
  • [25] Optimized State Model of Piecewise-Linear Dynamical Systems
    Pospisil, Jiri
    Kolka, Zdenek
    Hanus, Stanislav
    Michalek, Vaclav
    Brzobohaty, Jaromir
    RADIOENGINEERING, 2003, 12 (01) : 27 - 29
  • [26] Asymptotic analysis of a new piecewise-linear chaotic system
    Aziz-Alaoui, MA
    Chen, GR
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (01): : 147 - 157
  • [27] Nonsmooth bifurcations in a piecewise-linear model of the Colpitts oscillator
    Maggio, GM
    di Bernardo, M
    Kennedy, MP
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2000, 47 (08): : 1160 - 1177
  • [28] Stochastic shortest path problems with piecewise-linear concave utility functions
    Murthy, I
    Sarkar, S
    MANAGEMENT SCIENCE, 1998, 44 (11) : S125 - S136
  • [29] CANONICAL PIECEWISE-LINEAR NETWORKS
    LIN, JN
    UNBEHAUEN, R
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1995, 6 (01): : 43 - 50
  • [30] Periods of piecewise-linear recurrences
    Gordon, B
    MATHEMATICAL PROPERTIES OF SEQUENCES AND OTHER COMBINATORIAL STRUCTURES, 2003, 726 : 17 - 22