Asymptotic analysis of a new piecewise-linear chaotic system

被引:27
|
作者
Aziz-Alaoui, MA
Chen, GR
机构
[1] Univ Havre, Lab Math, FST, F-76058 Le Havre, France
[2] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
来源
关键词
D O I
10.1142/S0218127402004218
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Dynamical behavior of a new piecewise-linear continuous-time three-dimensional autonomous chaotic system is studied. System equilibria and their stabilities are discussed. Routes to chaos and bifurcations of the system are demonstrated with various numerical examples, where the chaotic features are justified numerically via computing the system fractal dimensions, Lyapunov exponents and power spectrum.
引用
收藏
页码:147 / 157
页数:11
相关论文
共 50 条
  • [1] A symmetric piecewise-linear chaotic system with a single equilibrium point
    González-López, R
    Rodríguez, MP
    Granero, MAF
    Ojeda, JLR
    Bruzón, ER
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (04): : 1411 - 1415
  • [2] FIBONACCI NUMBERS AND A CHAOTIC PIECEWISE-LINEAR FUNCTION
    FRAME, JS
    [J]. FIBONACCI QUARTERLY, 1994, 32 (02): : 167 - 169
  • [3] On the Piecewise-Linear Approximation of the Polynomial Chaotic Dynamics
    Petrzela, Jiri
    [J]. 2011 34TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2011, : 319 - 323
  • [4] ANALYTICAL RESULTS ON A CHAOTIC PIECEWISE-LINEAR ODE
    UEHLEKE, B
    ROSSLER, OE
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1984, 39 (04): : 342 - 348
  • [5] Results on a Novel Piecewise-Linear Memristor-Based Chaotic System
    Wang, Bo
    [J]. COMPLEXITY, 2019, 2019
  • [6] CANONICAL PIECEWISE-LINEAR ANALYSIS
    CHUA, LO
    YING, RLP
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1983, 30 (03): : 125 - 140
  • [7] Synthesis of piecewise-linear chaotic oscillators with prescribed eigenvalues
    Scanlan, SO
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2001, 48 (09): : 1057 - 1064
  • [8] Optimal Piecewise-Linear Approximation of the Quadratic Chaotic Dynamics
    Petrzela, Jiri
    [J]. RADIOENGINEERING, 2012, 21 (01) : 20 - 28
  • [9] ANALYSIS OF PIECEWISE-LINEAR SYSTEMS
    KOVALEV, YZ
    [J]. AUTOMATION AND REMOTE CONTROL, 1974, 35 (02) : 175 - 179
  • [10] THE PIECEWISE-LINEAR LORENZ CIRCUIT IS CHAOTIC IN THE SENSE OF SHILNIKOV
    TOKUNAGA, R
    MATSUMOTO, T
    CHUA, LO
    MIYAMA, S
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1990, 37 (06): : 766 - 786