A new piecewise-linear stochastic resonance model

被引:2
|
作者
Wang, LinZe [1 ]
Zhao, WenLi [2 ]
机构
[1] HangZhou Dianzi Univ, Inst Comp Applicat Technol, Hangzhou, Zhejiang, Peoples R China
[2] HangZhou Dianzi Univ, Inst Mech Design & Automot, Hangzhou, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
stochastic resonance; piecewise-linear model; bistable system; noise; SYSTEMS; NOISE;
D O I
10.1109/ICSMC.2009.5345990
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We put forward a new piecewise-linear stochastic resonance(SR) model for detecting the weak signal under the strong noise background for the large parameter case. Parameters of this piecewise-linear stochastic resonance system are less correlated than those of the traditional continuous non-linear bistable system, so that it is much easier to adjust the response characteristic of this system and generate the SR under the large parameter signals case. Here we show its description equations and character parameters. Through numerically simulating its performance under the noiseless, noisy, small parameter and large parameter cases respectively, we illustrate that this system is very helpful for detecting the weak signal under the strong noise background not only for the small parameters case, but also for the large parameters case.
引用
收藏
页码:5209 / +
页数:3
相关论文
共 50 条
  • [41] CANONICAL PIECEWISE-LINEAR REPRESENTATION
    CHUA, LO
    DENG, AC
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (01): : 101 - 111
  • [42] ANALYSIS OF PIECEWISE-LINEAR SYSTEMS
    KOVALEV, YZ
    AUTOMATION AND REMOTE CONTROL, 1974, 35 (02) : 175 - 179
  • [43] SYNTHESIS OF PIECEWISE-LINEAR NETWORKS
    CHUA, LO
    WONG, S
    IEE JOURNAL ON ELECTRONIC CIRCUITS AND SYSTEMS, 1978, 2 (04): : 102 - 108
  • [44] CANONICAL PIECEWISE-LINEAR APPROXIMATIONS
    LIN, JN
    UNBEHAUEN, R
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1992, 39 (08): : 697 - 699
  • [45] REMARKS ON PIECEWISE-LINEAR ALGEBRA
    SONTAG, ED
    PACIFIC JOURNAL OF MATHEMATICS, 1982, 98 (01) : 183 - 201
  • [46] Convex piecewise-linear fitting
    Alessandro Magnani
    Stephen P. Boyd
    Optimization and Engineering, 2009, 10 : 1 - 17
  • [47] CHAOTIFYING 2-D PIECEWISE-LINEAR MAPS VIA A PIECEWISE-LINEAR CONTROLLER FUNCTION
    Elhadj, Z.
    Sprott, J. C.
    NONLINEAR OSCILLATIONS, 2011, 13 (03): : 352 - 360
  • [48] ON THE EXPRESSIBILITY OF PIECEWISE-LINEAR CONTINUOUS FUNCTIONS AS THE DIFFERENCE OF TWO PIECEWISE-LINEAR CONVEX FUNCTIONS.
    Melzer, D.
    Mathematical Programming Study, 1986, (29): : 118 - 134
  • [49] A New Methodology to Extend the Canonical Piecewise-Linear Model from One to Two Dimensions
    Jimenez-Fernandez, V. M.
    Jimenez-Fernandez, M.
    Vazquez-Leal, H.
    Filobello-Nino, U. A.
    Castaneda-Roldan, C. H.
    Tlapa-Carrera, V. M.
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2021, 44 (03): : 221 - 224
  • [50] A New Methodology to Extend the Canonical Piecewise-Linear Model from One to Two Dimensions
    V. M. Jimenez-Fernandez
    M. Jimenez-Fernandez
    H. Vazquez-Leal
    U. A. Filobello-Nino
    C. H. Castañeda-Roldan
    V. M. Tlapa-Carrera
    National Academy Science Letters, 2021, 44 : 221 - 224