The Noisy Brain: Power of Resting-State Fluctuations Predicts Individual Recognition Performance

被引:8
|
作者
Grossman, Shany [1 ,2 ]
Yeagle, Erin M. [3 ,4 ]
Hare, Michal [1 ,2 ]
Espinal, Elizabeth [3 ,4 ]
Harpaz, Roy [1 ,2 ,5 ]
Noy, Niv [1 ,2 ]
Megevand, Pierre [3 ,4 ,6 ,7 ]
Groppe, David M. [3 ,4 ,8 ]
Mehta, Ashesh D. [3 ,4 ]
Malach, Rafael [1 ,2 ]
机构
[1] Weizmann Inst Sci, Dept Neurobiol, IL-76100 Rehovot, Israel
[2] Weizmann Inst Sci, Azrieli Natl Inst Human Brain Imaging & Res, IL-76100 Rehovot, Israel
[3] Donald & Barbara Zucker Sch Med Hofstra Northwell, Dept Neurosurg, Manhasset, NY 11030 USA
[4] Feinstein Inst Med Res, Manhasset, NY 11030 USA
[5] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA
[6] Geneva Univ Hosp, Neurol Div, Clin Neurosci Dept, CH-1205 Geneva, Switzerland
[7] Fac Med, CH-1205 Geneva, Switzerland
[8] Krembil Neurosci Ctr, Toronto, ON M5T 2S8, Canada
来源
CELL REPORTS | 2019年 / 29卷 / 12期
关键词
NEURAL VARIABILITY; CORTICAL ACTIVITY; FIELD POTENTIALS; ATTENTION; CORTEX; FMRI; INFORMATION; IGNITIONS; ACCURACY; DYNAMICS;
D O I
10.1016/j.celrep.2019.11.081
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The unique profile of strong and weak cognitive traits characterizing each individual is of a fundamental significance, yet their neurophysiological underpinnings remain elusive. Here, we present intracranial electroencephalogram (iEEG) measurements in humans pointing to resting-state cortical "noise" as a possible neurophysiological trait that limits visual recognition capacity. We show that amplitudes of slow (<1 Hz) spontaneous fluctuations in high-frequency power measured during rest were predictive of the patients' performance in a visual recognition 1-back task (26 patients, total of 1,389 bipolar contacts pairs). Importantly, the effect was selective only to task-related cortical sites. The prediction was significant even across long (mean distance 4.6 +/- 2.8 days) lags. These findings highlight the level of the individuals' internal "noise" as a trait that limits performance in externally oriented demanding tasks.
引用
收藏
页码:3775 / +
页数:14
相关论文
共 50 条
  • [31] RESTING-STATE BRAIN ENERGY METABOLISM PREDICTS LEVEL AND CONTENT OF CONSCIOUSNESS AFTER SEVERE BRAIN INJURY
    Stender, J.
    Mortensen, K. Nygaard
    Kupers, R.
    Thibaut, A.
    Darkner, S.
    Laureys, S.
    Gjedde, A.
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2016, 36 : 48 - 49
  • [32] Resting-state slow wave power, healthy aging and cognitive performance
    Vlahou, Eleni L.
    Thurm, Franka
    Kolassa, Iris-Tatjana
    Schlee, Winfried
    SCIENTIFIC REPORTS, 2014, 4
  • [33] Resting-state slow wave power, healthy aging and cognitive performance
    Eleni L. Vlahou
    Franka Thurm
    Iris-Tatjana Kolassa
    Winfried Schlee
    Scientific Reports, 4
  • [34] Resting-state functional brain connectivity predicts cognitive performance: An exploratory study on a time -based prospective memory task
    Zangrossi, Andrea
    Zanzotto, Giovanni
    Lorenzoni, Fabio
    Indelicato, Giuliana
    Aghedu, Fabio Cannas
    Cermelli, Paolo
    Bisiacchi, Patrizia Silvia
    BEHAVIOURAL BRAIN RESEARCH, 2021, 402
  • [35] Individual Resting-State Brain Networks Enabled by Massive Multivariate Conditional Mutual Information
    Sundaram, Padmavathi
    Luessi, Martin
    Bianciardi, Marta
    Stufflebeam, Steven
    Hamalainen, Matti
    Solo, Victor
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (06) : 1957 - 1966
  • [36] Selection of Seeds for Resting-State fMRI-Based Prediction of Individual Brain Maturity
    Scheel, Norman
    Essenwanger, Andrea
    Muente, Thomas F.
    Heldmann, Marcus
    Kraemer, Ulrike M.
    Mamlouk, Amir Madany
    BILDVERARBEITUNG FUR DIE MEDIZIN 2015: ALGORITHMEN - SYSTEME - ANWENDUNGEN, 2015, : 371 - 376
  • [37] Resting-state EEG activity predicts frontoparietal network reconfiguration and improved attentional performance
    Jacek Rogala
    Ewa Kublik
    Rafał Krauz
    Andrzej Wróbel
    Scientific Reports, 10
  • [38] Resting-state EEG activity predicts frontoparietal network reconfiguration and improved attentional performance
    Rogala, Jacek
    Kublik, Ewa
    Krauz, Rafal
    Wrobel, Andrzej
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [39] A method for reconstruction of interpretable brain networks from transient synchronization in resting-state BOLD fluctuations
    Noro, Yusuke
    Li, Ruixiang
    Matsui, Teppei
    Jimura, Koji
    FRONTIERS IN NEUROINFORMATICS, 2023, 16
  • [40] Assessing the mean strength and variations of the time-to-time fluctuations of resting-state brain activity
    Zhengjun Li
    Yu-Feng Zang
    Jianping Ding
    Ze Wang
    Medical & Biological Engineering & Computing, 2017, 55 : 631 - 640