Selection of Seeds for Resting-State fMRI-Based Prediction of Individual Brain Maturity

被引:1
|
作者
Scheel, Norman [1 ,2 ]
Essenwanger, Andrea [1 ]
Muente, Thomas F. [2 ]
Heldmann, Marcus [2 ]
Kraemer, Ulrike M. [2 ]
Mamlouk, Amir Madany [1 ]
机构
[1] Univ Lubeck, Inst Neuro & Bioinformat, Lubeck, Germany
[2] Univ Lubeck, Dept Neurol, Lubeck, Germany
关键词
D O I
10.1007/978-3-662-46224-9_64
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The analysis of resting-state brain connectivity allows unraveling the fundamentals of functional brain organization. Especially changes of network connectivity related to age or diseases promise to serve as early biomarkers. After control of subject movement, we found that, when reaching a critical number of subjects, age prediction is reproducible for all seed selection strategies tested here (functional, anatomical and random based seeds). On the Enhanced Rockland Community Sample, we use support vector regression (SVR) and intense permutation testing for statistical validation.
引用
收藏
页码:371 / 376
页数:6
相关论文
共 50 条
  • [1] Prediction of individual brain age using movie and resting-state fMRI
    Bi, Suyu
    Guan, Yun
    Tian, Lixia
    [J]. CEREBRAL CORTEX, 2024, 34 (01)
  • [2] Insomnia disorder diagnosed by resting-state fMRI-based SVM classifier
    He, Dongmei
    Ren, Dongmei
    Guo, Zhiwei
    Jiang, Binghu
    [J]. SLEEP MEDICINE, 2022, 95 : 126 - 129
  • [3] Individual characteristics outperform resting-state fMRI for the prediction of behavioral phenotypes
    Omidvarnia, Amir
    Sasse, Leonard
    Larabi, Daouia I.
    Raimondo, Federico
    Hoffstaedter, Felix
    Kasper, Jan
    Dukart, Jurgen
    Petersen, Marvin
    Cheng, Bastian
    Thomalla, Gotz
    Eickhoff, Simon B.
    Patil, Kaustubh R.
    [J]. COMMUNICATIONS BIOLOGY, 2024, 7 (01)
  • [4] Divergent association between pain intensity and resting-state fMRI-based brain entropy in different age groups
    Del Mauro, Gianpaolo
    Sevel, Landrew Samuel
    Boissoneault, Jeff
    Wang, Ze
    [J]. JOURNAL OF NEUROSCIENCE RESEARCH, 2024, 102 (05)
  • [5] Quantitative Prediction of Individual Psychopathology in Trauma Survivors Using Resting-State fMRI
    Qiyong Gong
    Lingjiang Li
    Mingying Du
    William Pettersson-Yeo
    Nicolas Crossley
    Xun Yang
    Jing Li
    Xiaoqi Huang
    Andrea Mechelli
    [J]. Neuropsychopharmacology, 2014, 39 : 681 - 687
  • [6] Quantitative Prediction of Individual Psychopathology in Trauma Survivors Using Resting-State fMRI
    Gong, Qiyong
    Li, Lingjiang
    Du, Mingying
    Pettersson-Yeo, William
    Crossley, Nicolas
    Yang, Xun
    Li, Jing
    Huang, Xiaoqi
    Mechelli, Andrea
    [J]. NEUROPSYCHOPHARMACOLOGY, 2014, 39 (03) : 681 - 687
  • [7] Role of resting-state fMRI-based brain network modularity in differentiating SCA1 and SCA2
    Bhardwaj, S.
    Sunny, A. S.
    Khokhar, S. K.
    Prasad, S.
    Kamble, N. L.
    Hegde, S.
    Kumar, K.
    Saini, J.
    Yadav, R.
    Pal, P. K.
    Bharath, R. D.
    [J]. MOVEMENT DISORDERS, 2022, 37 : S221 - S221
  • [8] Prediction of Individual Brain Maturity Using fMRI
    Dosenbach, Nico U. F.
    Nardos, Binyam
    Cohen, Alexander L.
    Fair, Damien A.
    Power, Jonathan D.
    Church, Jessica A.
    Nelson, Steven M.
    Wig, Gagan S.
    Vogel, Alecia C.
    Lessov-Schlaggar, Christina N.
    Barnes, Kelly Anne
    Dubis, Joseph W.
    Feczko, Eric
    Coalson, Rebecca S.
    Pruett, John R., Jr.
    Barch, Deanna M.
    Petersen, Steven E.
    Schlaggar, Bradley L.
    [J]. SCIENCE, 2010, 329 (5997) : 1358 - 1361
  • [9] Template-based prediction of vigilance fluctuations in resting-state fMRI
    Falahpour, Maryam
    Chang, Catie
    Wong, Chi Wah
    Liu, Thomas T.
    [J]. NEUROIMAGE, 2018, 174 : 317 - 327
  • [10] Spatiotemporal nonlinearity in resting-state fMRI of the human brain
    Xie, Xiaoping
    Cao, Zhitong
    Weng, Xuchu
    [J]. NEUROIMAGE, 2008, 40 (04) : 1672 - 1685