The Noisy Brain: Power of Resting-State Fluctuations Predicts Individual Recognition Performance

被引:8
|
作者
Grossman, Shany [1 ,2 ]
Yeagle, Erin M. [3 ,4 ]
Hare, Michal [1 ,2 ]
Espinal, Elizabeth [3 ,4 ]
Harpaz, Roy [1 ,2 ,5 ]
Noy, Niv [1 ,2 ]
Megevand, Pierre [3 ,4 ,6 ,7 ]
Groppe, David M. [3 ,4 ,8 ]
Mehta, Ashesh D. [3 ,4 ]
Malach, Rafael [1 ,2 ]
机构
[1] Weizmann Inst Sci, Dept Neurobiol, IL-76100 Rehovot, Israel
[2] Weizmann Inst Sci, Azrieli Natl Inst Human Brain Imaging & Res, IL-76100 Rehovot, Israel
[3] Donald & Barbara Zucker Sch Med Hofstra Northwell, Dept Neurosurg, Manhasset, NY 11030 USA
[4] Feinstein Inst Med Res, Manhasset, NY 11030 USA
[5] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA
[6] Geneva Univ Hosp, Neurol Div, Clin Neurosci Dept, CH-1205 Geneva, Switzerland
[7] Fac Med, CH-1205 Geneva, Switzerland
[8] Krembil Neurosci Ctr, Toronto, ON M5T 2S8, Canada
来源
CELL REPORTS | 2019年 / 29卷 / 12期
关键词
NEURAL VARIABILITY; CORTICAL ACTIVITY; FIELD POTENTIALS; ATTENTION; CORTEX; FMRI; INFORMATION; IGNITIONS; ACCURACY; DYNAMICS;
D O I
10.1016/j.celrep.2019.11.081
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The unique profile of strong and weak cognitive traits characterizing each individual is of a fundamental significance, yet their neurophysiological underpinnings remain elusive. Here, we present intracranial electroencephalogram (iEEG) measurements in humans pointing to resting-state cortical "noise" as a possible neurophysiological trait that limits visual recognition capacity. We show that amplitudes of slow (<1 Hz) spontaneous fluctuations in high-frequency power measured during rest were predictive of the patients' performance in a visual recognition 1-back task (26 patients, total of 1,389 bipolar contacts pairs). Importantly, the effect was selective only to task-related cortical sites. The prediction was significant even across long (mean distance 4.6 +/- 2.8 days) lags. These findings highlight the level of the individuals' internal "noise" as a trait that limits performance in externally oriented demanding tasks.
引用
收藏
页码:3775 / +
页数:14
相关论文
共 50 条
  • [41] Dynamic fluctuations coincide with periods of high and low modularity in resting-state functional brain networks
    Betzel, Richard F.
    Fukushima, Makoto
    He, Ye
    Zuo, Xi-Nian
    Sporns, Olaf
    NEUROIMAGE, 2016, 127 : 287 - 297
  • [42] Resting-state Spontaneous Fluctuations in Brain Activity: A New Paradigm for Presurgical Planning Using fMRI
    Shimony, Joshua S.
    Zhang, Dongyang
    Johnston, James M.
    Fox, Michael D.
    Roy, Abhik
    Leuthardt, Eric C.
    ACADEMIC RADIOLOGY, 2009, 16 (05) : 578 - 583
  • [43] Assessing the mean strength and variations of the time-to-time fluctuations of resting-state brain activity
    Li, Zhengjun
    Zang, Yu-Feng
    Ding, Jianping
    Wang, Ze
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2017, 55 (04) : 631 - 640
  • [44] TWIN CLASSIFICATION IN RESTING-STATE BRAIN CONNECTIVITY
    Gritsenko, Andrey
    Lindquist, Martin
    Chung, Moo K.
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 1391 - 1394
  • [45] Brain tumors disrupt the resting-state connectome
    Hadjiabadi, Darian H.
    Pung, Leland
    Zhang, Jiangyang
    Ward, B. D.
    Lim, Woo-Taek
    Kalavar, Meghana
    Thakor, Nitish V.
    Biswal, Bharat B.
    Pathak, Arvind P.
    NEUROIMAGE-CLINICAL, 2018, 18 : 279 - 289
  • [46] Energy landscapes of resting-state brain networks
    Watanabe, Takamitsu
    Hirose, Satoshi
    Wada, Hiroyuki
    Imai, Yoshio
    Machida, Toru
    Shirouzu, Ichiro
    Konishi, Seiki
    Miyashita, Yasushi
    Masuda, Naoki
    FRONTIERS IN NEUROINFORMATICS, 2014, 8
  • [47] Resting-state Brain Correlates of Cardiovascular Complexity
    Valenza, G.
    Duggento, A.
    Passamonti, L.
    Diciotti, S.
    Tessa, C.
    Toschi, N.
    Barbieri, R.
    2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2017, : 3317 - 3320
  • [48] The resting-state fMRI arterial signal predicts differential blood transit time through the brain
    Tong, Yunjie
    Yao, Jinxia
    Chen, J. Jean
    Frederick, Blaise deB
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2019, 39 (06): : 1148 - 1160
  • [49] Resting-State Functional Connectome Predicts Individual Differences in Depression During COVID-19 Pandemic
    Mao, Yu
    Chen, Qunlin
    Wei, Dongtao
    Yang, Wenjing
    Sun, Jiangzhou
    Yu, Yaxu
    Zhuang, Kaixiang
    Wang, Xiaoqin
    He, Li
    Feng, Tingyong
    Lei, Xu
    He, Qinghua
    Chen, Hong
    Duan, Shukai
    Qiu, Jiang
    AMERICAN PSYCHOLOGIST, 2022, 77 (06) : 760 - 769
  • [50] The origins of insight in resting-state brain activity
    Kounios, John
    Fleck, Jessica I.
    Green, Deborah L.
    Payne, Lisa
    Stevenson, Jennifer L.
    Bowden, Edward M.
    Jung-Beeman, Mark
    NEUROPSYCHOLOGIA, 2008, 46 (01) : 281 - 291