Phenomapping of patients with heart failure with preserved ejection fraction using machine learning-based unsupervised cluster analysis

被引:183
|
作者
Segar, Matthew W. [1 ]
Patel, Kershaw V. [1 ]
Ayers, Colby [1 ]
Basit, Mujeeb [1 ]
Tang, W. H. Wilson [2 ]
Willett, Duwayne [1 ]
Berry, Jarett [1 ]
Grodin, Justin L. [1 ]
Pandey, Ambarish [1 ]
机构
[1] Univ Texas Southwestern Med Ctr, Dept Internal Med, Div Cardiol, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
[2] Cleveland Clin, Dept Cardiovasc Med, Cleveland, OH 44106 USA
基金
美国国家卫生研究院;
关键词
Heart failure with preserved ejection fraction; Phenomapping; Machine learning; Outcomes; SPIRONOLACTONE; PHENOTYPE; RISK; MORTALITY; TOPCAT;
D O I
10.1002/ejhf.1621
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aim To identify distinct phenotypic subgroups in a highly-dimensional, mixed-data cohort of individuals with heart failure (HF) with preserved ejection fraction (HFpEF) using unsupervised clustering analysis. Methods and results The study included all Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist (TOPCAT) participants from the Americas (n = 1767). In the subset of participants with available echocardiographic data (derivation cohort, n = 654), we characterized three mutually exclusive phenogroups of HFpEF participants using penalized finite mixture model-based clustering analysis on 61 mixed-data phenotypic variables. Phenogroup 1 had higher burden of co-morbidities, natriuretic peptides, and abnormalities in left ventricular structure and function; phenogroup 2 had lower prevalence of cardiovascular and non-cardiac co-morbidities but higher burden of diastolic dysfunction; and phenogroup 3 had lower natriuretic peptide levels, intermediate co-morbidity burden, and the most favourable diastolic function profile. In adjusted Cox models, participants in phenogroup 1 (vs. phenogroup 3) had significantly higher risk for all adverse clinical events including the primary composite endpoint, all-cause mortality, and HF hospitalization. Phenogroup 2 (vs. phenogroup 3) was significantly associated with higher risk of HF hospitalization but a lower risk of atherosclerotic event (myocardial infarction, stroke, or cardiovascular death), and comparable risk of mortality. Similar patterns of association were also observed in the non-echocardiographic TOPCAT cohort (internal validation cohort, n = 1113) and an external cohort of patients with HFpEF [Phosphodiesterase-5 Inhibition to Improve Clinical Status and Exercise Capacity in Heart Failure with Preserved Ejection Fraction (RELAX) trial cohort, n = 198], with the highest risk of adverse outcome noted in phenogroup 1 participants. Conclusions Machine learning-based cluster analysis can identify phenogroups of patients with HFpEF with distinct clinical characteristics and long-term outcomes.
引用
收藏
页码:148 / 158
页数:11
相关论文
共 50 条
  • [21] Machine Learning Analysis of Left Ventricular Function to Characterize Heart Failure With Preserved Ejection Fraction
    Sanchez-Martinez, Sergio
    Duchateau, Nicolas
    Erdei, Tamas
    Kunszt, Gabor
    Aakhus, Svend
    Degiovanni, Anna
    Marino, Paolo
    Carluccio, Erberto
    Piella, Gemma
    Fraser, Alan G.
    Bijnens, Bart H.
    CIRCULATION-CARDIOVASCULAR IMAGING, 2018, 11 (04)
  • [22] Machine learning to identify patients response to spironolactone treatment in patients with heart failure with preserved ejection fraction
    Kresoja, K-P Karl-Patrik
    Unterhuber, M.
    Wachter, R.
    Rommel, K-P
    Besler, C.
    Thiele, H.
    Edelmann, F.
    Lurz, P.
    EUROPEAN JOURNAL OF HEART FAILURE, 2022, 24 : 44 - 45
  • [23] Machine Learning for Diastology and Heart Failure With Preserved Ejection Fraction: Hype or Hope?
    Lam, Carolyn S. P.
    Ho, Jennifer E.
    JOURNAL OF THE AMERICAN SOCIETY OF ECHOCARDIOGRAPHY, 2022, 35 (12) : 1256 - 1258
  • [24] Machine Learning Prediction of Mortality and Hospitalization in Heart Failure With Preserved Ejection Fraction
    Angraal, Suveen
    Mortazavi, Bobak J.
    Gupta, Aakriti
    Khera, Rohan
    Ahmad, Tariq
    Desai, Nihar R.
    Jacoby, Daniel L.
    Masoudi, Frederick A.
    Spertus, John A.
    Krumholz, Harlan M.
    JACC-HEART FAILURE, 2020, 8 (01) : 12 - 21
  • [25] Differences in Repolarization Heterogeneity Among Heart Failure with Preserved Ejection Fraction Pheno-groups (Patient Subgroups Identified by Phenomapping-Machine Learning Analysis)
    Oskouie, Suzanne K.
    Prenner, Stuart B.
    Shah, Sanjiv J.
    Sauer, Andrew J.
    JOURNAL OF CARDIAC FAILURE, 2016, 22 (08) : S69 - S69
  • [26] Cluster analysis of advanced invasive hemodynamics in heart failure with preserved ejection fraction
    Caravita, S. Sergio
    Baratto, C.
    Filippo, A.
    Dewachter, C.
    Perego, G. B.
    Senni, M.
    Previdi, F.
    Paleari, S.
    Badano, L. P.
    Fudim, M.
    Parati, G.
    Vachiery, J. L.
    Lanzarone, E.
    EUROPEAN JOURNAL OF HEART FAILURE, 2024, 26 : 73 - 73
  • [27] Profiling heart failure with preserved or mildly reduced ejection fraction by cluster analysis
    Vicent, Lourdes
    Rosillo, Nicolas
    Velez, Jorge
    Moreno, Guillermo
    Perez, Pablo
    Bernal, Jose Luis
    Seara, German
    Salguero-Bodes, Rafael
    Arribas, Fernando
    Bueno, Hector
    EUROPEAN HEART JOURNAL-QUALITY OF CARE AND CLINICAL OUTCOMES, 2024,
  • [28] Clinical phenotypes in heart failure with preserved ejection fraction: a cluster analysis of the swedish heart failure registry
    Uijl, A. Alicia
    Lund, L. H.
    Brugts, J. J.
    Linssen, G. C. M.
    Vaartjes, I.
    Asselbergs, F. W.
    Dahlstrom, U.
    Van Empel, V.
    Rocca, H. P. Brunner-La
    Hoes, A. W.
    Koudstaal, S.
    Savarese, G.
    EUROPEAN JOURNAL OF HEART FAILURE, 2020, 22 : 140 - 140
  • [29] Identification of novel pheno-groups in heart failure with preserved ejection fraction using machine learning
    Hedman, Asa K.
    Hage, Camilla
    Sharma, Anil
    Brosnan, Mary Julia
    Buckbinder, Leonard
    Gan, Li-Ming
    Shah, Sanjiv J.
    Linde, Cecilia M.
    Donal, Erwan
    Daubert, Jean-Claude
    Malarstig, Anders
    Ziemek, Daniel
    Lund, Lars
    HEART, 2020, 106 (05) : 342 - 349
  • [30] HEART FAILURE IN PATIENTS WITH PRESERVED EJECTION FRACTION - PUMPING HEART FAILURE?
    Sokolov, A. A.
    Martsinkevich, G., I
    KARDIOLOGIYA, 2018, 58 (06) : 79 - 84