Existence and exponential decay of ground-state solutions for a nonlinear Dirac equation

被引:12
|
作者
Zhang, Jian [1 ,2 ]
Zhang, Wen [1 ,2 ,3 ]
Zhao, Fukun [4 ]
机构
[1] Hunan Univ Commerce, Sch Math & Stat, Changsha 410205, Hunan, Peoples R China
[2] Hunan Univ Commerce, Key Lab Hunan Prov New Retail Virtual Real Techno, Changsha 410205, Hunan, Peoples R China
[3] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[4] Yunnan Normal Univ, Dept Math, Kunming 650500, Yunnan, Peoples R China
来源
关键词
Dirac equation; Ground-state solutions; Periodic and asymptotically periodic; Variational methods; INDEFINITE LINEAR PART; SCHRODINGER-EQUATIONS; STATIONARY STATES; CRITICAL GROWTH; POTENTIALS; FIELD; INFINITY;
D O I
10.1007/s00033-018-1009-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following nonlinear Dirac equation -i Sigma(3)(k=1) alpha(k)partial derivative(k)u+ a beta u + V (x)u = f (x,vertical bar u vertical bar) u, x is an element of R-3. The Dirac operator is unbounded from below and above so the associate energy functional is strongly indefinite. Under some suitable conditions on the potential and nonlinearity, we obtain the existence of ground-state solutions in periodic case and asymptotically periodic case via variational methods, respectively. Moreover, we also explore some properties of these ground-state solutions, such as compactness of set of ground-state solutions and exponential decay of ground-state solutions.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Exponential time decay of solutions to a nonlinear fourth-order parabolic equation
    Jüngel, A
    Toscani, G
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2003, 54 (03): : 377 - 386
  • [42] Exponential time decay of solutions to a nonlinear fourth-order parabolic equation
    A. Jüngel
    G. Toscani
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2003, 54 : 377 - 386
  • [43] Ground-state solutions of Schrodinger-type equation with magnetic field
    Li, Fuyi
    Zhang, Cui
    Liang, Zhanping
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (16) : 17511 - 17521
  • [44] Lifespan, asymptotic behavior and ground-state solutions to a nonlocal parabolic equation
    Zhou, Jun
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (01):
  • [45] Symmetric ground state solutions for the Choquard Logarithmic equation with exponential growth
    Yuan, Shuai
    Chen, Sitong
    APPLIED MATHEMATICS LETTERS, 2022, 132
  • [46] Existence and Profile of Ground-State Solutions to a 1-Laplacian Problem in RN
    Alves, Claudianor O.
    Figueiredo, Giovany M.
    Pimenta, Marcos T. O.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2020, 51 (03): : 863 - 886
  • [47] Ground state solutions and infinitely many solutions for a nonlinear Choquard equation
    Tianfang Wang
    Wen Zhang
    Boundary Value Problems, 2021
  • [48] Ground state solutions and infinitely many solutions for a nonlinear Choquard equation
    Wang, Tianfang
    Zhang, Wen
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [49] Bifurcation solutions for a nonlinear Dirac equation
    Yu, Yuanyang
    APPLIED MATHEMATICS LETTERS, 2022, 134
  • [50] Normalized solutions for a nonlinear Dirac equation
    Zelati, Vittorio Coti
    Nolasco, Margherita
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 414 : 746 - 772