Exponential time decay of solutions to a nonlinear fourth-order parabolic equation

被引:0
|
作者
A. Jüngel
G. Toscani
机构
[1] Fachbereich Mathematik und Statistik,
[2] Universität Konstanz,undefined
[3] Fach D193,undefined
[4] D-78457 Konstanz,undefined
[5] Germany,undefined
[6] e-mail: juengel@fmi.uni-konstanz.de,undefined
[7] Dipartimento di Matematica,undefined
[8] Universitá degli Studi di Pavia,undefined
[9] via Ferrata 1,undefined
[10] I-27100 Pavia,undefined
[11] Italy,undefined
[12] e-mail: toscani@dimat.unipv.it,undefined
关键词
Key word. Asymptotic behavior, entropy dissipation, higher-order parabolic equation, diffusion equation.¶Mathematics Subject Classification (2000). 35B40, 35K35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we investigate the large-time behavior of weak solutions to the nonlinear fourth-order parabolic equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n_t = -(n(\log n)_{xx})_{xx}$\end{document} modeling interface fluctuations in spin systems. We study here the case \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x\in \Omega =(0,1)$\end{document}, with n = 1, nx = 0 on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\partial \Omega$\end{document}. In particular, we prove the exponential decay of u(x,t) towards the constant steady state \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n_\infty =1$\end{document} in the L1 norm for long times and we give the explicit rate of decay. The result is based on classical entropy estimates, and on detailed lower bounds for the entropy production.
引用
收藏
页码:377 / 386
页数:9
相关论文
共 50 条