MORSE AREA AND SCHARLEMANN-THOMPSON WIDTH FOR HYPERBOLIC 3-MANIFOLDS

被引:2
|
作者
Hoffoss, Diane [1 ]
Maher, Joseph [2 ,3 ]
机构
[1] Univ San Diego, Dept Math & Comp Sci, 5998 Alcala Pk, San Diego, CA 92110 USA
[2] CUNY Coll Staten Isl, Dept Math, 2800 Victory Blvd, Staten Isl, NY 10314 USA
[3] CUNY Grad Ctr, 2800 Victory Blvd, Staten Isl, NY 10314 USA
关键词
hyperbolic; 3-manifold; Heegaard splitting; Morse function; Scharlemann-Thompson width; MINIMAL-SURFACES;
D O I
10.2140/pjm.2016.281.83
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Scharlemann and Thompson define a numerical complexity for a 3-manifold using handle decompositions of the manifold. We show that for compact hyperbolic 3-manifolds, this is linearly related to a definition of metric complexity in terms of the areas of level sets of Morse functions.
引用
收藏
页码:83 / 102
页数:20
相关论文
共 50 条
  • [21] Group Actions on Hyperbolic 3-manifolds
    王诗宬
    数学进展, 1991, (01) : 77 - 85
  • [22] Norms on the cohomology of hyperbolic 3-manifolds
    Jeffrey F. Brock
    Nathan M. Dunfield
    Inventiones mathematicae, 2017, 210 : 531 - 558
  • [23] TORI WITH HYPERBOLIC DYNAMICS IN 3-MANIFOLDS
    Rodriguez Hertz, Federico
    Rodriguez Hertz, Maria Alejandra
    Ures, Raul
    JOURNAL OF MODERN DYNAMICS, 2011, 5 (01) : 185 - 202
  • [24] Thick surfaces in hyperbolic 3-manifolds
    Masters, Joseph D.
    GEOMETRIAE DEDICATA, 2006, 119 (01) : 17 - 33
  • [25] Hyperbolic 3-Manifolds Boot Camp
    Adams, Colin
    MATHEMATICAL INTELLIGENCER, 2021, 43 (01): : 40 - 41
  • [26] On certain classes of hyperbolic 3-manifolds
    Alberto Cavicchioli
    Luisa Paoluzzi
    manuscripta mathematica, 2000, 101 : 457 - 494
  • [27] THE SPECTRUM OF DEGENERATING HYPERBOLIC 3-MANIFOLDS
    CHAVEL, I
    DODZIUK, J
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1994, 39 (01) : 123 - 137
  • [28] Cusp transitivity in hyperbolic 3-manifolds
    John G. Ratcliffe
    Steven T. Tschantz
    Geometriae Dedicata, 2021, 212 : 141 - 152
  • [29] Volumes of tubes in hyperbolic 3-manifolds
    Gabai, D
    Meyerhoff, GR
    Milley, P
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2001, 57 (01) : 23 - 46
  • [30] Hyperbolic 3-manifolds in the 2000's
    Gabai, David
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL II: INVITED LECTURES, 2010, : 960 - 972