MORSE AREA AND SCHARLEMANN-THOMPSON WIDTH FOR HYPERBOLIC 3-MANIFOLDS

被引:2
|
作者
Hoffoss, Diane [1 ]
Maher, Joseph [2 ,3 ]
机构
[1] Univ San Diego, Dept Math & Comp Sci, 5998 Alcala Pk, San Diego, CA 92110 USA
[2] CUNY Coll Staten Isl, Dept Math, 2800 Victory Blvd, Staten Isl, NY 10314 USA
[3] CUNY Grad Ctr, 2800 Victory Blvd, Staten Isl, NY 10314 USA
关键词
hyperbolic; 3-manifold; Heegaard splitting; Morse function; Scharlemann-Thompson width; MINIMAL-SURFACES;
D O I
10.2140/pjm.2016.281.83
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Scharlemann and Thompson define a numerical complexity for a 3-manifold using handle decompositions of the manifold. We show that for compact hyperbolic 3-manifolds, this is linearly related to a definition of metric complexity in terms of the areas of level sets of Morse functions.
引用
收藏
页码:83 / 102
页数:20
相关论文
共 50 条
  • [41] Geodesic planes in hyperbolic 3-manifolds
    McMullen, Curtis T.
    Mohammadi, Amir
    Oh, Hee
    INVENTIONES MATHEMATICAE, 2017, 209 (02) : 425 - 461
  • [42] On the complexity and volume of hyperbolic 3-manifolds
    Thomas Delzant
    Leonid Potyagailo
    Israel Journal of Mathematics, 2013, 193 : 209 - 232
  • [43] QUASICONVEXITY OF BANDS IN HYPERBOLIC 3-MANIFOLDS
    Bowditch, Brian H.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 96 (02) : 167 - 185
  • [44] UNKNOTTING TUNNELS IN HYPERBOLIC 3-MANIFOLDS
    ADAMS, C
    MATHEMATISCHE ANNALEN, 1995, 302 (01) : 177 - 195
  • [45] Geodesic planes in hyperbolic 3-manifolds
    Curtis T. McMullen
    Amir Mohammadi
    Hee Oh
    Inventiones mathematicae, 2017, 209 : 425 - 461
  • [46] DEHN FILLING HYPERBOLIC 3-MANIFOLDS
    ADAMS, C
    PACIFIC JOURNAL OF MATHEMATICS, 1994, 165 (02) : 217 - 238
  • [47] A census of cusped hyperbolic 3-manifolds
    Callahan, PJ
    Hildebrand, MV
    Weeks, JR
    MATHEMATICS OF COMPUTATION, 1999, 68 (225) : 321 - 332
  • [48] Norms on the cohomology of hyperbolic 3-manifolds
    Brock, Jeffrey F.
    Dunfield, Nathan M.
    INVENTIONES MATHEMATICAE, 2017, 210 (02) : 531 - 558
  • [49] Geometrically tame hyperbolic 3-manifolds
    Canary, Richard D.
    Proceedings of Symposia in Pure Mathematics, 1993, 54 (02):
  • [50] HYPERBOLIC 3-MANIFOLDS AND CLUSTER ALGEBRAS
    Nagao, Kentaro
    Terashima, Yuji
    Yamazaki, Masahito
    NAGOYA MATHEMATICAL JOURNAL, 2019, 235 : 1 - 25