Cusp transitivity in hyperbolic 3-manifolds

被引:0
|
作者
John G. Ratcliffe
Steven T. Tschantz
机构
[1] Vanderbilt University,Department of Mathematics
来源
Geometriae Dedicata | 2021年 / 212卷
关键词
Cusped hyperbolic 3-manifold; Multiply transitive group action; Link complement; Platonic tessellation; Finite permutation group; 57K32; 57M50; 57M60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study multiply transitive actions of the group of isometries of a cusped finite-volume hyperbolic 3-manifold on the set of its cusps. In particular, we prove a conjecture of Vogeler that there is a largest integer k for which such k-transitive actions exist, and that for each integer k≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 3$$\end{document}, there is an upper bound on the possible number of cusps.
引用
收藏
页码:141 / 152
页数:11
相关论文
共 50 条
  • [1] Cusp transitivity in hyperbolic 3-manifolds
    Ratcliffe, John G.
    Tschantz, Steven T.
    [J]. GEOMETRIAE DEDICATA, 2021, 212 (01) : 141 - 152
  • [2] Cusp densities of hyperbolic 3-manifolds
    Adams, C
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2002, 45 : 277 - 284
  • [3] ON IDEAL POINTS OF DEFORMATION CURVES OF HYPERBOLIC 3-MANIFOLDS WITH ONE CUSP
    YOSHIDA, T
    [J]. TOPOLOGY, 1991, 30 (02) : 155 - 170
  • [4] Cusp size bounds from singular surfaces in hyperbolic 3-manifolds
    Adams, C
    Colestock, A
    Fowler, J
    Gillam, W
    Katerman, E
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (02) : 727 - 741
  • [5] Homotopy hyperbolic 3-manifolds are hyperbolic
    Gabai, D
    Meyerhoff, GR
    Thurston, N
    [J]. ANNALS OF MATHEMATICS, 2003, 157 (02) : 335 - 431
  • [6] CUSP GEOMETRY OF FLBERED 3-MANIFOLDS
    Futer, David
    Schleimer, Saul
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2014, 136 (02) : 309 - 356
  • [7] Macfarlane hyperbolic 3-manifolds
    Quinn, Joseph A.
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (03): : 1603 - 1632
  • [8] Tubes in hyperbolic 3-manifolds
    Przeworski, A
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2003, 128 (2-3) : 103 - 122
  • [9] Horocycles in hyperbolic 3-manifolds
    McMullen, Curtis T.
    Mohammadi, Amir
    Oh, Hee
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2016, 26 (03) : 961 - 973
  • [10] Horocycles in hyperbolic 3-manifolds
    Curtis T. McMullen
    Amir Mohammadi
    Hee Oh
    [J]. Geometric and Functional Analysis, 2016, 26 : 961 - 973