Homotopy hyperbolic 3-manifolds are hyperbolic

被引:54
|
作者
Gabai, D
Meyerhoff, GR
Thurston, N
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] Boston Coll, Chestnut Hill, MA 02167 USA
[3] Predict Networks, Cambridge, MA USA
关键词
D O I
10.4007/annals.2003.157.335
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
下载
收藏
页码:335 / 431
页数:97
相关论文
共 50 条
  • [1] Horocycles in hyperbolic 3-manifolds
    McMullen, Curtis T.
    Mohammadi, Amir
    Oh, Hee
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2016, 26 (03) : 961 - 973
  • [2] Macfarlane hyperbolic 3-manifolds
    Quinn, Joseph A.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (03): : 1603 - 1632
  • [3] Tubes in hyperbolic 3-manifolds
    Przeworski, A
    TOPOLOGY AND ITS APPLICATIONS, 2003, 128 (2-3) : 103 - 122
  • [4] Horocycles in hyperbolic 3-manifolds
    Curtis T. McMullen
    Amir Mohammadi
    Hee Oh
    Geometric and Functional Analysis, 2016, 26 : 961 - 973
  • [5] Systoles of hyperbolic 3-manifolds
    Adams, CC
    Reid, AW
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2000, 128 : 103 - 110
  • [6] VOLUMES OF HYPERBOLIC 3-MANIFOLDS
    NEUMANN, WD
    ZAGIER, D
    TOPOLOGY, 1985, 24 (03) : 307 - 332
  • [7] Balls in hyperbolic 3-manifolds
    Przeworski, A
    HOUSTON JOURNAL OF MATHEMATICS, 2005, 31 (01): : 161 - 171
  • [8] Exceptional hyperbolic 3-manifolds
    Gabai, David
    Trnkova, Maria
    COMMENTARII MATHEMATICI HELVETICI, 2015, 90 (03) : 703 - 730
  • [9] Ergodicity of partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds
    Fenley, Sergio R.
    Potrie, Rafael
    ADVANCES IN MATHEMATICS, 2022, 401
  • [10] On limits of tame hyperbolic 3-manifolds
    Canary, RD
    Minsky, YN
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1996, 43 (01) : 1 - 41