Homotopy hyperbolic 3-manifolds are hyperbolic

被引:54
|
作者
Gabai, D
Meyerhoff, GR
Thurston, N
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] Boston Coll, Chestnut Hill, MA 02167 USA
[3] Predict Networks, Cambridge, MA USA
关键词
D O I
10.4007/annals.2003.157.335
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
下载
收藏
页码:335 / 431
页数:97
相关论文
共 50 条
  • [41] A census of cusped hyperbolic 3-manifolds
    Callahan, PJ
    Hildebrand, MV
    Weeks, JR
    MATHEMATICS OF COMPUTATION, 1999, 68 (225) : 321 - 332
  • [42] Isospectral finiteness on hyperbolic 3-manifolds
    Kim, I
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (05) : 617 - 625
  • [43] On hyperelliptic involutions of hyperbolic 3-manifolds
    Reni, M
    Zimmermann, B
    MATHEMATISCHE ANNALEN, 2001, 321 (02) : 295 - 317
  • [44] Length multiplicities of hyperbolic 3-manifolds
    Joseph D. Masters
    Israel Journal of Mathematics, 2000, 119 : 9 - 28
  • [45] Norms on the cohomology of hyperbolic 3-manifolds
    Brock, Jeffrey F.
    Dunfield, Nathan M.
    INVENTIONES MATHEMATICAE, 2017, 210 (02) : 531 - 558
  • [46] Geometrically tame hyperbolic 3-manifolds
    Canary, Richard D.
    Proceedings of Symposia in Pure Mathematics, 1993, 54 (02):
  • [47] HYPERBOLIC 3-MANIFOLDS AND CLUSTER ALGEBRAS
    Nagao, Kentaro
    Terashima, Yuji
    Yamazaki, Masahito
    NAGOYA MATHEMATICAL JOURNAL, 2019, 235 : 1 - 25
  • [48] Shrinkwrapping and the taming of hyperbolic 3-manifolds
    Calegari, D
    Gabai, D
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 19 (02) : 385 - 446
  • [49] A finiteness theorem for hyperbolic 3-manifolds
    Biringer, Ian
    Souto, Juan
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2011, 84 : 227 - 242
  • [50] Short geodesics in hyperbolic 3-manifolds
    Breslin, William
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2011, 11 (02): : 735 - 745