MORSE AREA AND SCHARLEMANN-THOMPSON WIDTH FOR HYPERBOLIC 3-MANIFOLDS

被引:2
|
作者
Hoffoss, Diane [1 ]
Maher, Joseph [2 ,3 ]
机构
[1] Univ San Diego, Dept Math & Comp Sci, 5998 Alcala Pk, San Diego, CA 92110 USA
[2] CUNY Coll Staten Isl, Dept Math, 2800 Victory Blvd, Staten Isl, NY 10314 USA
[3] CUNY Grad Ctr, 2800 Victory Blvd, Staten Isl, NY 10314 USA
关键词
hyperbolic; 3-manifold; Heegaard splitting; Morse function; Scharlemann-Thompson width; MINIMAL-SURFACES;
D O I
10.2140/pjm.2016.281.83
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Scharlemann and Thompson define a numerical complexity for a 3-manifold using handle decompositions of the manifold. We show that for compact hyperbolic 3-manifolds, this is linearly related to a definition of metric complexity in terms of the areas of level sets of Morse functions.
引用
收藏
页码:83 / 102
页数:20
相关论文
共 50 条
  • [1] Morse functions to graphs and topological complexity for hyperbolic 3-manifolds
    Hoffoss, Diane
    Maher, Joseph
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2022, 30 (04) : 843 - 867
  • [2] MINIMAL AREA SURFACES AND FIBERED HYPERBOLIC 3-MANIFOLDS
    Farre, James
    Pallete, Franco Vargas
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (11) : 4931 - 4946
  • [3] Homotopy hyperbolic 3-manifolds are hyperbolic
    Gabai, D
    Meyerhoff, GR
    Thurston, N
    ANNALS OF MATHEMATICS, 2003, 157 (02) : 335 - 431
  • [4] Macfarlane hyperbolic 3-manifolds
    Quinn, Joseph A.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (03): : 1603 - 1632
  • [5] Tubes in hyperbolic 3-manifolds
    Przeworski, A
    TOPOLOGY AND ITS APPLICATIONS, 2003, 128 (2-3) : 103 - 122
  • [6] Horocycles in hyperbolic 3-manifolds
    McMullen, Curtis T.
    Mohammadi, Amir
    Oh, Hee
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2016, 26 (03) : 961 - 973
  • [7] Horocycles in hyperbolic 3-manifolds
    Curtis T. McMullen
    Amir Mohammadi
    Hee Oh
    Geometric and Functional Analysis, 2016, 26 : 961 - 973
  • [8] Systoles of hyperbolic 3-manifolds
    Adams, CC
    Reid, AW
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2000, 128 : 103 - 110
  • [9] VOLUMES OF HYPERBOLIC 3-MANIFOLDS
    NEUMANN, WD
    ZAGIER, D
    TOPOLOGY, 1985, 24 (03) : 307 - 332
  • [10] Balls in hyperbolic 3-manifolds
    Przeworski, A
    HOUSTON JOURNAL OF MATHEMATICS, 2005, 31 (01): : 161 - 171