An asymptotic valuation for the option under a general stochastic volatility

被引:1
|
作者
Kim, YJ [1 ]
机构
[1] Hosei Univ, Fac Business Adm, Chiyoda Ku, Tokyo 1028160, Japan
关键词
D O I
10.15807/jorsj.45.404
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This article examines the valuation problem for the European option under a general stochastic volatility in a certain approximate sense by adopting the small disturbance asymptotic theory developed by Kunitomo and Takahashi [25, 26]. The option value can be decomposed into the Black and Scholes value under deterministic volatility and adjustment terms driven by the randomness of the volatility, which also extends some portions of Kunitomo and Kim [24].
引用
收藏
页码:404 / 425
页数:22
相关论文
共 50 条
  • [41] Exchange option pricing under stochastic volatility: a correlation expansion
    Antonelli, F.
    Ramponi, A.
    Scarlatti, S.
    REVIEW OF DERIVATIVES RESEARCH, 2010, 13 (01) : 45 - 73
  • [42] American option pricing under two stochastic volatility processes
    Chiarella, Carl
    Ziveyi, Jonathan
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 224 : 283 - 310
  • [43] Estimating option greeks under the stochastic volatility using simulation
    Shafi, Khuram
    Latif, Natasha
    Shad, Shafqat Ali
    Idrees, Zahra
    Gulzar, Saqib
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 503 : 1288 - 1296
  • [44] American option pricing under stochastic volatility: An empirical evaluation
    AitSahlia F.
    Goswami M.
    Guha S.
    Computational Management Science, 2010, 7 (2) : 189 - 206
  • [46] Homotopy analysis method for option pricing under stochastic volatility
    Park, Sang-Hyeon
    Kim, Jeong-Hoon
    APPLIED MATHEMATICS LETTERS, 2011, 24 (10) : 1740 - 1744
  • [47] Executive Stock Option Pricing in China Under Stochastic Volatility
    Chong, Terence Tai Leung
    Ding, Yue
    Li, Yong
    JOURNAL OF FUTURES MARKETS, 2015, 35 (10) : 953 - 960
  • [48] A binomial option pricing model under stochastic volatility and jump
    Chang, CC
    Fu, HC
    CANADIAN JOURNAL OF ADMINISTRATIVE SCIENCES-REVUE CANADIENNE DES SCIENCES DE L ADMINISTRATION, 2001, 18 (03): : 192 - 203
  • [49] American option pricing under two stochastic volatility processes
    Chiarella, Carl
    Ziveyi, Jonathan
    Applied Mathematics and Computation, 2013, 224 : 283 - 310
  • [50] STOCHASTIC VOLATILITY OPTION PRICING
    BALL, CA
    ROMA, A
    JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS, 1994, 29 (04) : 589 - 607