An asymptotic valuation for the option under a general stochastic volatility

被引:1
|
作者
Kim, YJ [1 ]
机构
[1] Hosei Univ, Fac Business Adm, Chiyoda Ku, Tokyo 1028160, Japan
关键词
D O I
10.15807/jorsj.45.404
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This article examines the valuation problem for the European option under a general stochastic volatility in a certain approximate sense by adopting the small disturbance asymptotic theory developed by Kunitomo and Takahashi [25, 26]. The option value can be decomposed into the Black and Scholes value under deterministic volatility and adjustment terms driven by the randomness of the volatility, which also extends some portions of Kunitomo and Kim [24].
引用
收藏
页码:404 / 425
页数:22
相关论文
共 50 条
  • [31] PRICING EXOTIC OPTION UNDER STOCHASTIC VOLATILITY MODEL
    Li, Pengshi
    E & M EKONOMIE A MANAGEMENT, 2019, 22 (04): : 134 - 144
  • [32] General approximation schemes for option prices in stochastic volatility models
    Larsson, Karl
    QUANTITATIVE FINANCE, 2012, 12 (06) : 873 - 891
  • [33] OPTION PRICING AND EXECUTIVE STOCK OPTION INCENTIVES: AN EMPIRICAL INVESTIGATION UNDER GENERAL ERROR DISTRIBUTION STOCHASTIC VOLATILITY MODEL
    Pan, Min
    Tang, Shengqiao
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2011, 28 (01) : 81 - 93
  • [34] Breakeven Volatility for Real Option Valuation
    Nicholls, Gillian M.
    Lewis, Neal A.
    Zhang, Liang
    Jiang, Zhuoyuan
    ENGINEERING MANAGEMENT JOURNAL, 2014, 26 (02) : 49 - 61
  • [35] Option valuation based on volatility decomposition
    Zhou R.
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2018, 38 (08): : 1919 - 1929
  • [36] Asymptotic computation of Greeks under a stochastic volatility model
    Park, Sang-Hyeon
    Lee, Kiseop
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2016, 23 (01) : 21 - 32
  • [37] A general valuation framework for rough stochastic local volatility models and applications☆
    Yang, Wensheng
    Ma, Jingtang
    Cui, Zhenyu
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2025, 322 (01) : 307 - 324
  • [38] Variable annuity with a surrender option under multiscale stochastic volatility
    Jeonggyu Huh
    Junkee Jeon
    Kyunghyun Park
    Japan Journal of Industrial and Applied Mathematics, 2023, 40 : 1 - 39
  • [39] Exchange option pricing under stochastic volatility: a correlation expansion
    F. Antonelli
    A. Ramponi
    S. Scarlatti
    Review of Derivatives Research, 2010, 13 : 45 - 73
  • [40] Variable annuity with a surrender option under multiscale stochastic volatility
    Huh, Jeonggyu
    Jeon, Junkee
    Park, Kyunghyun
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2023, 40 (01) : 1 - 39