An asymptotic valuation for the option under a general stochastic volatility

被引:1
|
作者
Kim, YJ [1 ]
机构
[1] Hosei Univ, Fac Business Adm, Chiyoda Ku, Tokyo 1028160, Japan
关键词
D O I
10.15807/jorsj.45.404
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This article examines the valuation problem for the European option under a general stochastic volatility in a certain approximate sense by adopting the small disturbance asymptotic theory developed by Kunitomo and Takahashi [25, 26]. The option value can be decomposed into the Black and Scholes value under deterministic volatility and adjustment terms driven by the randomness of the volatility, which also extends some portions of Kunitomo and Kim [24].
引用
收藏
页码:404 / 425
页数:22
相关论文
共 50 条
  • [21] European option pricing with transaction costs and stochastic volatility: an asymptotic analysis
    Caflisch, R. E.
    Gambino, G.
    Sammartino, M.
    Sgarra, C.
    IMA JOURNAL OF APPLIED MATHEMATICS, 2015, 80 (04) : 981 - 1008
  • [22] European option pricing with transaction costs and stochastic volatility: An asymptotic analysis
    Caflisch, R.E.
    Gambino, G.
    Sammartino, M.
    Sgarra, C.
    IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications), 2014, 80 (04): : 981 - 1008
  • [23] On the Asymptotic Behavior of the Optimal Exercise Price Near Expiry of an American Put Option under Stochastic Volatility
    Chen, Wenting
    Zhu, Song-Ping
    JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2022, 15 (05)
  • [24] American option valuation under stochastic interest rates
    Chung S.-L.
    Review of Derivatives Research, 2000, 3 (3) : 283 - 307
  • [25] The evaluation of barrier option prices under stochastic volatility
    Chiarella, Carl
    Kang, Boda
    Meyer, Gunter H.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (06) : 2034 - 2048
  • [26] Option pricing under hybrid stochastic and local volatility
    Choi, Sun-Yong
    Fouque, Jean-Pierre
    Kim, Jeong-Hoon
    QUANTITATIVE FINANCE, 2013, 13 (08) : 1157 - 1165
  • [27] A new approach for option pricing under stochastic volatility
    Carr P.
    Sun J.
    Review of Derivatives Research, 2007, 10 (2) : 87 - 150
  • [28] Option pricing under stochastic volatility on a quantum computer
    Wang, Guoming
    Kan, Angus
    QUANTUM, 2024, 8
  • [29] OPTION PRICING UNDER THE FRACTIONAL STOCHASTIC VOLATILITY MODEL
    Han, Y.
    Li, Z.
    Liu, C.
    ANZIAM JOURNAL, 2021, 63 (02): : 123 - 142
  • [30] Bounds on European option prices under stochastic volatility
    Frey, R
    Sin, CA
    MATHEMATICAL FINANCE, 1999, 9 (02) : 97 - 116