Photometric selection and redshifts for quasars in the Kilo-Degree Survey Data Release 4

被引:26
|
作者
Nakoneczny, S. J. [1 ]
Bilicki, M. [2 ]
Pollo, A. [1 ,3 ]
Asgari, M. [4 ]
Dvornik, A. [5 ]
Erben, T. [6 ]
Giblin, B. [4 ]
Heymans, C. [4 ,5 ]
Hildebrandt, H. [5 ]
Kannawadi, A. [7 ]
Kuijken, K. [8 ]
Napolitano, N. R. [9 ]
Valentijn, E. [10 ]
机构
[1] Natl Ctr Nucl Res, Astrophys Div, Ul Pasteura 7, PL-02093 Warsaw, Poland
[2] Polish Acad Sci, Ctr Theoret Phys, Al Lotnikow 32-46, PL-02668 Warsaw, Poland
[3] Jagiellonian Univ, Astron Observ, PL-31007 Krakow, Poland
[4] Univ Edinburgh, Inst Astron, Royal Observ, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland
[5] Ruhr Univ Bochum, Fac Phys & Astron, German Ctr Cosmol Lensing, Astron Inst AIRUB, D-44780 Bochum, Germany
[6] Argelander Inst Astron, Hugel 71, D-53121 Bonn, Germany
[7] Princeton Univ, Dept Astrophys Sci, 4 Ivy Lane, Princeton, NJ 08544 USA
[8] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands
[9] Sun Yat Sen Univ, Sch Phys & Astron, Zhuhai Campus, Guangzhou 519082, Peoples R China
[10] Univ Groningen, Kapteyn Inst, POB 800, NL-9700 AV Groningen, Netherlands
基金
欧洲研究理事会;
关键词
methods: data analysis; methods: observational; catalogs; surveys; quasars: general; large-scale structure of Universe; ACTIVE GALACTIC NUCLEI; DIGITAL-SKY-SURVEY; TARGET SELECTION; HALO MASSES; KIDS-SQUAD; MID-IR; WISE; CLASSIFICATION; SDSS; CATALOG;
D O I
10.1051/0004-6361/202039684
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a catalog of quasars with their corresponding redshifts derived from the photometric Kilo-Degree Survey (KiDS) Data Release 4. We achieved it by training machine learning (ML) models, using optical ugri and near-infrared ZYJHK(s) bands, on objects known from Sloan Digital Sky Survey (SDSS) spectroscopy. We define inference subsets from the 45 million objects of the KiDS photometric data limited to 9-band detections, based on a feature space built from magnitudes and their combinations. We show that projections of the high-dimensional feature space on two dimensions can be successfully used, instead of the standard color-color plots, to investigate the photometric estimations, compare them with spectroscopic data, and efficiently support the process of building a catalog. The model selection and fine-tuning employs two subsets of objects: those randomly selected and the faintest ones, which allowed us to properly fit the bias versus variance trade-off. We tested three ML models: random forest (RF), XGBoost (XGB), and artificial neural network (ANN). We find that XGB is the most robust and straightforward model for classification, while ANN performs the best for combined classification and redshift. The ANN inference results are tested using number counts, Gaia parallaxes, and other quasar catalogs that are external to the training set. Based on these tests, we derived the minimum classification probability for quasar candidates which provides the best purity versus completeness trade-off: p(QSO(cand)) > 0.9 for r<22 and p(QSO(cand)) > 0.98 for 22<r<23.5. We find 158 000 quasar candidates in the safe inference subset (r<22) and an additional 185 000 candidates in the reliable extrapolation regime (22<r<23.5). Test-data purity equals 97% and completeness is 94%; the latter drops by 3% in the extrapolation to data fainter by one magnitude than the training set. The photometric redshifts were derived with ANN and modeled with Gaussian uncertainties. The test-data redshift error (mean and scatter) equals 0.009 +/- 0.12 in the safe subset and -0.0004 +/- 0.19 in the extrapolation, averaged over a redshift range of 0.14<z<3.63 (first and 99th percentiles). Our success of the extrapolation challenges the way that models are optimized and applied at the faint data end. The resulting catalog is ready for cosmology and active galactic nucleus (AGN) studies.
引用
收藏
页数:17
相关论文
共 50 条
  • [42] Deep learning approach for classifying, detecting and predicting photometric redshifts of quasars in the Sloan Digital Sky Survey stripe 82
    Pasquet-Itam, J.
    Pasquet, J.
    ASTRONOMY & ASTROPHYSICS, 2018, 611
  • [43] Quasar Photometric Redshifts and Candidate Selection: A New Algorithm Based on Optical and Mid-infrared Photometric Data
    Yang, Qian
    Wu, Xue-Bing
    Fan, Xiaohui
    Jiang, Linhua
    McGreer, Ian
    Green, Richard
    Yang, Jinyi
    Schindler, Jan-Torge
    Wang, Feige
    Zuo, Wenwen
    Fu, Yuming
    ASTRONOMICAL JOURNAL, 2017, 154 (06):
  • [44] A photometric selection of white dwarf candidates in Sloan Digital Sky Survey Data Release 10
    Fusillo, Nicola Pietro Gentile
    Gaensicke, Boris T.
    Greiss, Sandra
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 448 (03) : 2260 - 2274
  • [45] The SCUBA half degree extragalactic survey -: IV.: Radio-mm-FIR photometric redshifts
    Aretxaga, Itziar
    Hughes, David H.
    Coppin, Kristen
    Mortier, Angela M. J.
    Wagg, Jeff
    Dunlop, James S.
    Chapin, Edward L.
    Eales, Stephen A.
    Gaztanaga, Enrique
    Halpern, Mark
    Ivison, Rob J.
    van Kampen, Eelco
    Scott, Douglas
    Serjeant, Stephen
    Smail, Ian
    Babbedge, Thomas
    Benson, Andrew J.
    Chapman, Scott
    Clements, David L.
    Dunne, Loretta
    Dye, Simon
    Farrah, Duncan
    Jarvis, Matt J.
    Mann, Robert G.
    Pope, Alexandra
    Priddey, Robert
    Rawlings, Steve
    Seigar, Marc
    Silva, Laura
    Simpson, Chris
    Vaccari, Mattia
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2007, 379 (04) : 1571 - 1588
  • [46] The LOFAR Two-metre Sky Survey IV. First Data Release: Photometric redshifts and rest-frame magnitudes
    Duncan, K. J.
    Sabater, J.
    Rottgering, H. J. A.
    Jarvis, M. J.
    Smith, D. J. B.
    Best, P. N.
    Callingham, J. R.
    Cochrane, R.
    Croston, J. H.
    Hardcastle, M. J.
    Mingo, B.
    Morabito, L.
    Nisbet, D.
    Prandoni, I.
    Shimwell, T. W.
    Tasse, C.
    White, G. J.
    Williams, W. L.
    Alegre, L.
    Chyzy, K. T.
    Gurkan, G.
    Hoeft, M.
    Kondapally, R.
    Mechev, A. P.
    Miley, G. K.
    Schwarz, D. J.
    van Weeren, R. J.
    ASTRONOMY & ASTROPHYSICS, 2019, 622
  • [47] The lofar two-meter sky survey: Deep fields data release 1: IV. Photometric redshifts and stellar masses
    Duncan, K.J.
    Kondapally, R.
    Brown, M.J.I.
    Bonato, M.
    Best, P.N.
    Röttgering, H.J.A.
    Bondi, M.
    Bowler, R.A.A.
    Cochrane, R.K.
    Gürkan, G.
    Hardcastle, M.J.
    Jarvis, M.J.
    Kunert-Bajraszewska, M.
    Leslie, S.K.
    Malek, K.
    Morabito, L.K.
    O'Sullivan, S.P.
    Prandoni, I.
    Sabater, J.
    Shimwell, T.W.
    Smith, D.J.B.
    Wang, L.
    Wolowska, A.
    Tasse, C.
    Astronomy and Astrophysics, 2021, 648
  • [48] The LOFAR Two-meter Sky Survey: Deep Fields Data Release 1 IV. Photometric redshifts and stellar masses
    Duncan, K. J.
    Kondapally, R.
    Brown, M. J., I
    Bonato, M.
    Best, P. N.
    Roettgering, H. J. A.
    Bondi, M.
    Bowler, R. A. A.
    Cochrane, R. K.
    Guerkan, G.
    Hardcastle, M. J.
    Jarvis, M. J.
    Kunert-Bajraszewska, M.
    Leslie, S. K.
    Malek, K.
    Morabito, L. K.
    O'Sullivan, S. P.
    Prandoni, I
    Sabater, J.
    Shimwell, T. W.
    Smith, D. J. B.
    Wang, L.
    Wolowska, A.
    Tasse, C.
    ASTRONOMY & ASTROPHYSICS, 2021, 648
  • [49] Morphological signatures of mergers in the TNG50 simulation and the Kilo-Degree Survey: the merger fraction from dwarfs to Milky Way-like galaxies
    Guzman-Ortega, Alejandro
    Rodriguez-Gomez, Vicente
    Snyder, Gregory F.
    Chamberlain, Katie
    Hernquist, Lars
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 519 (04) : 4920 - 4937
  • [50] Photometric redshifts probability density estimation from recurrent neural networks in the DECam local volume exploration survey data release 2
    Teixeira, G.
    Bom, C. R.
    Santana-Silva, L.
    Fraga, B. M. O.
    Darc, P.
    Teixeira, R.
    Wu, J. F.
    Ferguson, P. S.
    Martinez-Vazquez, C. E.
    Riley, A. H.
    Drlica-Wagner, A.
    Choi, Y.
    Mutlu-Pakdil, B.
    Pace, A. B.
    Sakowska, J. D.
    Stringfellow, G. S.
    ASTRONOMY AND COMPUTING, 2024, 49