Photometric selection and redshifts for quasars in the Kilo-Degree Survey Data Release 4

被引:26
|
作者
Nakoneczny, S. J. [1 ]
Bilicki, M. [2 ]
Pollo, A. [1 ,3 ]
Asgari, M. [4 ]
Dvornik, A. [5 ]
Erben, T. [6 ]
Giblin, B. [4 ]
Heymans, C. [4 ,5 ]
Hildebrandt, H. [5 ]
Kannawadi, A. [7 ]
Kuijken, K. [8 ]
Napolitano, N. R. [9 ]
Valentijn, E. [10 ]
机构
[1] Natl Ctr Nucl Res, Astrophys Div, Ul Pasteura 7, PL-02093 Warsaw, Poland
[2] Polish Acad Sci, Ctr Theoret Phys, Al Lotnikow 32-46, PL-02668 Warsaw, Poland
[3] Jagiellonian Univ, Astron Observ, PL-31007 Krakow, Poland
[4] Univ Edinburgh, Inst Astron, Royal Observ, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland
[5] Ruhr Univ Bochum, Fac Phys & Astron, German Ctr Cosmol Lensing, Astron Inst AIRUB, D-44780 Bochum, Germany
[6] Argelander Inst Astron, Hugel 71, D-53121 Bonn, Germany
[7] Princeton Univ, Dept Astrophys Sci, 4 Ivy Lane, Princeton, NJ 08544 USA
[8] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands
[9] Sun Yat Sen Univ, Sch Phys & Astron, Zhuhai Campus, Guangzhou 519082, Peoples R China
[10] Univ Groningen, Kapteyn Inst, POB 800, NL-9700 AV Groningen, Netherlands
基金
欧洲研究理事会;
关键词
methods: data analysis; methods: observational; catalogs; surveys; quasars: general; large-scale structure of Universe; ACTIVE GALACTIC NUCLEI; DIGITAL-SKY-SURVEY; TARGET SELECTION; HALO MASSES; KIDS-SQUAD; MID-IR; WISE; CLASSIFICATION; SDSS; CATALOG;
D O I
10.1051/0004-6361/202039684
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a catalog of quasars with their corresponding redshifts derived from the photometric Kilo-Degree Survey (KiDS) Data Release 4. We achieved it by training machine learning (ML) models, using optical ugri and near-infrared ZYJHK(s) bands, on objects known from Sloan Digital Sky Survey (SDSS) spectroscopy. We define inference subsets from the 45 million objects of the KiDS photometric data limited to 9-band detections, based on a feature space built from magnitudes and their combinations. We show that projections of the high-dimensional feature space on two dimensions can be successfully used, instead of the standard color-color plots, to investigate the photometric estimations, compare them with spectroscopic data, and efficiently support the process of building a catalog. The model selection and fine-tuning employs two subsets of objects: those randomly selected and the faintest ones, which allowed us to properly fit the bias versus variance trade-off. We tested three ML models: random forest (RF), XGBoost (XGB), and artificial neural network (ANN). We find that XGB is the most robust and straightforward model for classification, while ANN performs the best for combined classification and redshift. The ANN inference results are tested using number counts, Gaia parallaxes, and other quasar catalogs that are external to the training set. Based on these tests, we derived the minimum classification probability for quasar candidates which provides the best purity versus completeness trade-off: p(QSO(cand)) > 0.9 for r<22 and p(QSO(cand)) > 0.98 for 22<r<23.5. We find 158 000 quasar candidates in the safe inference subset (r<22) and an additional 185 000 candidates in the reliable extrapolation regime (22<r<23.5). Test-data purity equals 97% and completeness is 94%; the latter drops by 3% in the extrapolation to data fainter by one magnitude than the training set. The photometric redshifts were derived with ANN and modeled with Gaussian uncertainties. The test-data redshift error (mean and scatter) equals 0.009 +/- 0.12 in the safe subset and -0.0004 +/- 0.19 in the extrapolation, averaged over a redshift range of 0.14<z<3.63 (first and 99th percentiles). Our success of the extrapolation challenges the way that models are optimized and applied at the faint data end. The resulting catalog is ready for cosmology and active galactic nucleus (AGN) studies.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Multiband Analysis of Strong Gravitationally Lensed Post-blue Nugget Candidates from the Kilo-degree Survey
    Li, Rui
    Napolitano, Nicola R.
    Xie, Linghua
    Li, Ran
    Guo, Xiaotong
    Sergeyev, Alexey
    Tortora, Crescenzo
    Spiniello, Chiara
    Sonnenfeld, Alessandro
    Koopmans, Leon V. E.
    Scognamiglio, Diana
    ASTROPHYSICAL JOURNAL, 2024, 973 (02):
  • [32] Efficient photometric selection of quasars from the Sloan Digital Sky Survey:: 100,000 z &lt; 3 quasars from Data Release One
    Richards, GT
    Nichol, RC
    Gray, AG
    Brunner, RJ
    Lupton, RH
    Berk, DEV
    Chong, SS
    Weinstein, MA
    Schneider, DP
    Anderson, SF
    Munn, JA
    Harris, HC
    Strauss, MA
    Fan, XH
    Gunn, JE
    Ivezic, Z
    York, DG
    Brinkmann, J
    Moore, AW
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2004, 155 (02): : 257 - 269
  • [33] Star-forming and gas-rich brightest cluster galaxies at z ∼ 0.4 in the Kilo-Degree Survey
    Castignani, G.
    Radovich, M.
    Combes, F.
    Salome, P.
    Maturi, M.
    Moscardini, L.
    Bardelli, S.
    Giocoli, C.
    Lesci, G.
    Marulli, F.
    Puddu, E.
    Sereno, M.
    ASTRONOMY & ASTROPHYSICS, 2022, 667
  • [34] LinKS: discovering galaxy-scale strong lenses in the Kilo-Degree Survey using convolutional neural networks
    Petrillo, C. E.
    Tortora, C.
    Vernardos, G.
    Koopmans, L. V. E.
    Kleijn, G. Verdoes
    Bilicki, M.
    Napolitano, N. R.
    Chatterjee, S.
    Covone, G.
    Dvornik, A.
    Erben, T.
    Getman, F.
    Giblin, B.
    Heymans, C.
    de Jong, J. T. A.
    Kuijken, K.
    Schneider, P.
    Shan, H.
    Spiniello, C.
    Wright, A. H.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 484 (03) : 3879 - 3896
  • [35] Star-forming and gas-rich brightest cluster galaxies at z∼0.4 in the Kilo-Degree Survey
    Castignani, G.
    Radovich, M.
    Combes, F.
    Salomé, P.
    Maturi, M.
    Moscardini, L.
    Bardelli, S.
    Giocoli, C.
    Lesci, G.
    Marulli, F.
    Puddu, E.
    Sereno, M.
    Astronomy and Astrophysics, 2022, 667
  • [36] EFFICIENT PHOTOMETRIC SELECTION OF QUASARS FROM THE SLOAN DIGITAL SKY SURVEY. II. ∼1,000,000 QUASARS FROM DATA RELEASE 6
    Richards, Gordon T.
    Myers, Adam D.
    Gray, Alexander G.
    Riegel, Ryan N.
    Nichol, Robert C.
    Brunner, Robert J.
    Szalay, Alexander S.
    Schneider, Donald P.
    Anderson, Scott F.
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2009, 180 (01): : 67 - 83
  • [37] ESTIMATING PHOTOMETRIC REDSHIFTS OF QUASARS VIA THE k-NEAREST NEIGHBOR APPROACH BASED ON LARGE SURVEY DATABASES
    Zhang, Yanxia
    Ma, He
    Peng, Nanbo
    Zhao, Yongheng
    Wu, Xue-Bing
    ASTRONOMICAL JOURNAL, 2013, 146 (02):
  • [38] A SURVEY OF GALAXY REDSHIFTS .4. THE DATA
    HUCHRA, J
    DAVIS, M
    LATHAM, D
    TONRY, J
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 1983, 52 (02): : 89 - 119
  • [39] Application of CNOC2 calibrated photometric redshifts to a 6 square degree BVRI survey
    Lin, H
    Sawicki, M
    Yee, HKC
    Hall, PB
    Gladders, MD
    PHOTOMETRIC REDSHIFTS AND HIGH REDSHIFT GALAXIES, 1999, 191 : 154 - 159
  • [40] The galaxy environment in GAMA G3C groups using the Kilo Degree Survey Data Release 3
    Costa-Duarte, M., V
    Viola, M.
    Molino, A.
    Kuijken, K.
    Sodre Jr, L.
    Bilicki, M.
    Brouwer, M. M.
    Buddelmeijer, H.
    Getman, F.
    Grado, A.
    de Jong, J. T. A.
    Kleijn, G., V
    Napolitano, N.
    Puddu, E.
    Radovich, M.
    Vakili, M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 478 (02) : 1968 - 1979