Photometric selection and redshifts for quasars in the Kilo-Degree Survey Data Release 4

被引:26
|
作者
Nakoneczny, S. J. [1 ]
Bilicki, M. [2 ]
Pollo, A. [1 ,3 ]
Asgari, M. [4 ]
Dvornik, A. [5 ]
Erben, T. [6 ]
Giblin, B. [4 ]
Heymans, C. [4 ,5 ]
Hildebrandt, H. [5 ]
Kannawadi, A. [7 ]
Kuijken, K. [8 ]
Napolitano, N. R. [9 ]
Valentijn, E. [10 ]
机构
[1] Natl Ctr Nucl Res, Astrophys Div, Ul Pasteura 7, PL-02093 Warsaw, Poland
[2] Polish Acad Sci, Ctr Theoret Phys, Al Lotnikow 32-46, PL-02668 Warsaw, Poland
[3] Jagiellonian Univ, Astron Observ, PL-31007 Krakow, Poland
[4] Univ Edinburgh, Inst Astron, Royal Observ, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland
[5] Ruhr Univ Bochum, Fac Phys & Astron, German Ctr Cosmol Lensing, Astron Inst AIRUB, D-44780 Bochum, Germany
[6] Argelander Inst Astron, Hugel 71, D-53121 Bonn, Germany
[7] Princeton Univ, Dept Astrophys Sci, 4 Ivy Lane, Princeton, NJ 08544 USA
[8] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands
[9] Sun Yat Sen Univ, Sch Phys & Astron, Zhuhai Campus, Guangzhou 519082, Peoples R China
[10] Univ Groningen, Kapteyn Inst, POB 800, NL-9700 AV Groningen, Netherlands
基金
欧洲研究理事会;
关键词
methods: data analysis; methods: observational; catalogs; surveys; quasars: general; large-scale structure of Universe; ACTIVE GALACTIC NUCLEI; DIGITAL-SKY-SURVEY; TARGET SELECTION; HALO MASSES; KIDS-SQUAD; MID-IR; WISE; CLASSIFICATION; SDSS; CATALOG;
D O I
10.1051/0004-6361/202039684
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a catalog of quasars with their corresponding redshifts derived from the photometric Kilo-Degree Survey (KiDS) Data Release 4. We achieved it by training machine learning (ML) models, using optical ugri and near-infrared ZYJHK(s) bands, on objects known from Sloan Digital Sky Survey (SDSS) spectroscopy. We define inference subsets from the 45 million objects of the KiDS photometric data limited to 9-band detections, based on a feature space built from magnitudes and their combinations. We show that projections of the high-dimensional feature space on two dimensions can be successfully used, instead of the standard color-color plots, to investigate the photometric estimations, compare them with spectroscopic data, and efficiently support the process of building a catalog. The model selection and fine-tuning employs two subsets of objects: those randomly selected and the faintest ones, which allowed us to properly fit the bias versus variance trade-off. We tested three ML models: random forest (RF), XGBoost (XGB), and artificial neural network (ANN). We find that XGB is the most robust and straightforward model for classification, while ANN performs the best for combined classification and redshift. The ANN inference results are tested using number counts, Gaia parallaxes, and other quasar catalogs that are external to the training set. Based on these tests, we derived the minimum classification probability for quasar candidates which provides the best purity versus completeness trade-off: p(QSO(cand)) > 0.9 for r<22 and p(QSO(cand)) > 0.98 for 22<r<23.5. We find 158 000 quasar candidates in the safe inference subset (r<22) and an additional 185 000 candidates in the reliable extrapolation regime (22<r<23.5). Test-data purity equals 97% and completeness is 94%; the latter drops by 3% in the extrapolation to data fainter by one magnitude than the training set. The photometric redshifts were derived with ANN and modeled with Gaussian uncertainties. The test-data redshift error (mean and scatter) equals 0.009 +/- 0.12 in the safe subset and -0.0004 +/- 0.19 in the extrapolation, averaged over a redshift range of 0.14<z<3.63 (first and 99th percentiles). Our success of the extrapolation challenges the way that models are optimized and applied at the faint data end. The resulting catalog is ready for cosmology and active galactic nucleus (AGN) studies.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Luminous red galaxies in the Kilo-Degree Survey: selection with broad-band photometry and weak lensing measurements
    Vakili, Mohammadjavad
    Bilicki, Maciej
    Hoekstra, Henk
    Chisari, Nora Elisa
    Brown, Michael J. I.
    Georgiou, Christos
    Kannawadi, Arun
    Kuijken, Konrad
    Wright, Angus H.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 487 (03) : 3715 - 3733
  • [22] High-quality Strong Lens Candidates in the Final Kilo-Degree Survey Footprint
    Li, R.
    Napolitano, N. R.
    Spiniello, C.
    Tortora, C.
    Kuijken, K.
    Koopmans, L. V. E.
    Schneider, P.
    Getman, F.
    Xie, L.
    Long, L.
    Shu, W.
    Vernardos, G.
    Huang, Z.
    Covone, G.
    Dvornik, A.
    Heymans, C.
    Hildebrandt, H.
    Radovich, M.
    Wright, A. H.
    ASTROPHYSICAL JOURNAL, 2021, 923 (01):
  • [23] Studying galaxy troughs and ridges using weak gravitational lensing with the Kilo-Degree Survey
    Brouwer, Margot M.
    Demchenko, Vasiliy
    Harnois-Deraps, Joachim
    Bilicki, Maciej
    Heymans, Catherine
    Hoekstra, Henk
    Kuijken, Konrad
    Alpaslan, Mehmet
    Brough, Sarah
    Cai, Yan-Chuan
    Costa-Duarte, Marcus V.
    Dvornik, Andrej
    Erben, Thomas
    Hildebrandt, Hendrik
    Holwerda, Benne W.
    Schneider, Peter
    Sifon, Cristobal
    van Uitert, Edo
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 481 (04) : 5189 - 5209
  • [24] Photometric redshifts for the SDSS Data Release 12
    Beck, Robert
    Dobos, Laszlo
    Budavari, Tamas
    Szalay, Alexander S.
    Csabai, Istvan
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 460 (02) : 1371 - 1381
  • [25] Evolution of galaxy size-stellar mass relation from the Kilo-Degree Survey
    Roy, N.
    Napolitano, N. R.
    La Barbera, F.
    Tortora, C.
    Getman, F.
    Radovich, M.
    Capaccioli, M.
    Brescia, M.
    Cavuoti, S.
    Longo, G.
    Raj, M. A.
    Puddu, E.
    Covone, G.
    Amaro, V.
    Vellucci, C.
    Grado, A.
    Kuijken, K.
    Kleijn, G. Verdoes
    Valentijn, E.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 480 (01) : 1057 - 1080
  • [26] The fourth data release of the Kilo-Degree Survey: ugri imaging and nine-band optical-IR photometry over 1000 square degrees
    Kuijken, K.
    Heymans, C.
    Dvornik, A.
    Hildebrandt, H.
    de Jong, J. T. A.
    Wright, A. H.
    Erben, T.
    Bilicki, M.
    Giblin, B.
    Shan, H-Y
    Getman, F.
    Grado, A.
    Hoekstra, H.
    Miller, L.
    Napolitano, N.
    Paolilo, M.
    Radovich, M.
    Schneider, P.
    Sutherland, W.
    Tewes, M.
    Tortora, C.
    Valentijn, E. A.
    Kleijn, G. A. Verdoes
    ASTRONOMY & ASTROPHYSICS, 2019, 625
  • [27] New High-quality Strong Lens Candidates with Deep Learning in the Kilo-Degree Survey
    Li, R.
    Napolitano, N. R.
    Tortora, C.
    Spiniello, C.
    Koopmans, L. V. E.
    Huang, Z.
    Roy, N.
    Vernardos, G.
    Chatterjee, S.
    Giblin, B.
    Getman, F.
    Radovich, M.
    Covone, G.
    Kuijken, K.
    ASTROPHYSICAL JOURNAL, 2020, 899 (01):
  • [28] The application of photometric redshifts to the SDSS early data release
    Csabai, I
    Budavári, T
    Connolly, AJ
    Szalay, AS
    Gyory, Z
    Benítez, N
    Annis, J
    Brinkmann, J
    Eisenstein, D
    Fukugita, M
    Gunn, J
    Kent, S
    Lupton, R
    Nichol, RC
    Stoughton, C
    ASTRONOMICAL JOURNAL, 2003, 125 (02): : 580 - 592
  • [29] An empirical algorithm for broadband photometric redshifts of quasars from the Sloan Digital Sky Survey
    Weinstein, MA
    Richards, GT
    Schneider, DP
    Younger, JD
    Strauss, MA
    Hall, PB
    Budavári, T
    Gunn, JE
    York, DG
    Brinkmann, J
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2004, 155 (02): : 243 - 256
  • [30] Photometric redshifts and k-corrections for the Sloan Digital Sky Survey Data Release 7
    O'Mill, Ana Laura
    Duplancic, Fernanda
    Lambas, Diego Garcia
    Sodre, Laerte, Jr.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 413 (02) : 1395 - 1408