Photometric selection and redshifts for quasars in the Kilo-Degree Survey Data Release 4

被引:26
|
作者
Nakoneczny, S. J. [1 ]
Bilicki, M. [2 ]
Pollo, A. [1 ,3 ]
Asgari, M. [4 ]
Dvornik, A. [5 ]
Erben, T. [6 ]
Giblin, B. [4 ]
Heymans, C. [4 ,5 ]
Hildebrandt, H. [5 ]
Kannawadi, A. [7 ]
Kuijken, K. [8 ]
Napolitano, N. R. [9 ]
Valentijn, E. [10 ]
机构
[1] Natl Ctr Nucl Res, Astrophys Div, Ul Pasteura 7, PL-02093 Warsaw, Poland
[2] Polish Acad Sci, Ctr Theoret Phys, Al Lotnikow 32-46, PL-02668 Warsaw, Poland
[3] Jagiellonian Univ, Astron Observ, PL-31007 Krakow, Poland
[4] Univ Edinburgh, Inst Astron, Royal Observ, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland
[5] Ruhr Univ Bochum, Fac Phys & Astron, German Ctr Cosmol Lensing, Astron Inst AIRUB, D-44780 Bochum, Germany
[6] Argelander Inst Astron, Hugel 71, D-53121 Bonn, Germany
[7] Princeton Univ, Dept Astrophys Sci, 4 Ivy Lane, Princeton, NJ 08544 USA
[8] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands
[9] Sun Yat Sen Univ, Sch Phys & Astron, Zhuhai Campus, Guangzhou 519082, Peoples R China
[10] Univ Groningen, Kapteyn Inst, POB 800, NL-9700 AV Groningen, Netherlands
基金
欧洲研究理事会;
关键词
methods: data analysis; methods: observational; catalogs; surveys; quasars: general; large-scale structure of Universe; ACTIVE GALACTIC NUCLEI; DIGITAL-SKY-SURVEY; TARGET SELECTION; HALO MASSES; KIDS-SQUAD; MID-IR; WISE; CLASSIFICATION; SDSS; CATALOG;
D O I
10.1051/0004-6361/202039684
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a catalog of quasars with their corresponding redshifts derived from the photometric Kilo-Degree Survey (KiDS) Data Release 4. We achieved it by training machine learning (ML) models, using optical ugri and near-infrared ZYJHK(s) bands, on objects known from Sloan Digital Sky Survey (SDSS) spectroscopy. We define inference subsets from the 45 million objects of the KiDS photometric data limited to 9-band detections, based on a feature space built from magnitudes and their combinations. We show that projections of the high-dimensional feature space on two dimensions can be successfully used, instead of the standard color-color plots, to investigate the photometric estimations, compare them with spectroscopic data, and efficiently support the process of building a catalog. The model selection and fine-tuning employs two subsets of objects: those randomly selected and the faintest ones, which allowed us to properly fit the bias versus variance trade-off. We tested three ML models: random forest (RF), XGBoost (XGB), and artificial neural network (ANN). We find that XGB is the most robust and straightforward model for classification, while ANN performs the best for combined classification and redshift. The ANN inference results are tested using number counts, Gaia parallaxes, and other quasar catalogs that are external to the training set. Based on these tests, we derived the minimum classification probability for quasar candidates which provides the best purity versus completeness trade-off: p(QSO(cand)) > 0.9 for r<22 and p(QSO(cand)) > 0.98 for 22<r<23.5. We find 158 000 quasar candidates in the safe inference subset (r<22) and an additional 185 000 candidates in the reliable extrapolation regime (22<r<23.5). Test-data purity equals 97% and completeness is 94%; the latter drops by 3% in the extrapolation to data fainter by one magnitude than the training set. The photometric redshifts were derived with ANN and modeled with Gaussian uncertainties. The test-data redshift error (mean and scatter) equals 0.009 +/- 0.12 in the safe subset and -0.0004 +/- 0.19 in the extrapolation, averaged over a redshift range of 0.14<z<3.63 (first and 99th percentiles). Our success of the extrapolation challenges the way that models are optimized and applied at the faint data end. The resulting catalog is ready for cosmology and active galactic nucleus (AGN) studies.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Bright galaxy sample in the Kilo-Degree Survey Data Release 4 Selection, photometric redshifts, and physical properties
    Bilicki, M.
    Dvornik, A.
    Hoekstra, H.
    Wright, A. H.
    Chisari, N. E.
    Vakili, M.
    Asgari, M.
    Giblin, B.
    Heymans, C.
    Hildebrandt, H.
    Holwerda, B. W.
    Hopkins, A.
    Johnston, H.
    Kannawadi, A.
    Kuijken, K.
    Nakoneczny, S. J.
    Shan, H. Y.
    Sonnenfeld, A.
    Valentijn, E.
    ASTRONOMY & ASTROPHYSICS, 2021, 653
  • [2] Catalog of quasars from the Kilo-Degree Survey Data Release 3
    Nakoneczny, S.
    Bilicki, M.
    Solarz, A.
    Pollo, A.
    Maddox, N.
    Spiniello, C.
    Brescia, M.
    Napolitano, N. R.
    ASTRONOMY & ASTROPHYSICS, 2019, 624
  • [3] Machine-learning-based photometric redshifts for galaxies of the ESO Kilo-Degree Survey data release 2
    Cavuoti, S.
    Brescia, M.
    Tortora, C.
    Longo, G.
    Napolitano, N. R.
    Radovich, M.
    La Barbera, F.
    Capaccioli, M.
    de Jong, J. T. A.
    Getman, F.
    Grado, A.
    Paolillo, M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 452 (03) : 3100 - 3105
  • [4] First discoveries of z ∼ 6 quasars with the Kilo-Degree Survey and VISTA Kilo-Degree Infrared Galaxy survey
    Venemans, B. P.
    Kleijn, G. A. Verdoes
    Mwebaze, J.
    Valentijn, E. A.
    Banados, E.
    Decarli, R.
    de Jong, J. T. A.
    Findlay, J. R.
    Kuijken, K. H.
    La Barbera, F.
    McFarland, J. P.
    McMahon, R. G.
    Napolitano, N.
    Sikkema, G.
    Sutherland, W. J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 453 (03) : 2259 - 2266
  • [5] Photometric redshifts for the Kilo-Degree Survey Machine-learning analysis with artificial neural networks
    Bilicki, M.
    Hoekstra, H.
    Brown, M. J. I.
    Amaro, V.
    Blake, C.
    Cavuoti, S.
    de Jong, J. T. A.
    Georgiou, C.
    Hildebrandt, H.
    Wolf, C.
    Amon, A.
    Brescia, M.
    Brough, S.
    Costa-Duarte, M. V.
    Erben, T.
    Glazebrook, K.
    Grado, A.
    Heymans, C.
    Jarrett, T.
    Joudaki, S.
    Kuijken, K.
    Longo, G.
    Napolitano, N.
    Parkinson, D.
    Vellucci, C.
    Kleijn, G. A. Verdoes
    Wang, L.
    ASTRONOMY & ASTROPHYSICS, 2018, 616
  • [6] The third data release of the Kilo-Degree Survey and associated data products
    de Jong, Jelte T. A.
    Kleijn, Gijs A. Verdoes
    Erben, Thomas
    Hildebrandt, Hendrik
    Kuijken, Konrad
    Sikkema, Gert
    Brescia, Massimo
    Bilicki, Maciej
    Napolitano, Nicola R.
    Amaro, Valeria
    Begeman, Kor G.
    Boxhoorn, Danny R.
    Buddelmeijer, Hugo
    Cavuoti, Stefano
    Getman, Fedor
    Grado, Aniello
    Helmich, Ewout
    Huang, Zhuoyi
    Irisarri, Nancy
    La Barbera, Francesco
    Longo, Giuseppe
    McFarland, John P.
    Nakajima, Reiko
    Paolillo, Maurizio
    Puddu, Emanuella
    Radovich, Mario
    Rifatto, Agatino
    Tortora, Crescenzo
    Valentijn, Edwin A.
    Vellucci, Civita
    Vriend, Willem-Jan
    Amon, Alexandra
    Blake, Chris
    Choi, Ami
    Conti, Ian Fenech
    Gwyn, Stephen D. J.
    Herbonnet, Ricardo
    Heymans, Catherine
    Hoekstra, Henk
    Klaes, Dominik
    Merten, Julian
    Miller, Lance
    Schneider, Peter
    Viola, Massimo
    ASTRONOMY & ASTROPHYSICS, 2017, 604
  • [7] The Kilo-Degree Survey
    Jelte T. A. de Jong
    Gijs A. Verdoes Kleijn
    Konrad H. Kuijken
    Edwin A. Valentijn
    Experimental Astronomy, 2013, 35 : 25 - 44
  • [8] The Kilo-Degree Survey
    de Jong, Jelte T. A.
    Kleijn, Gijs A. Verdoes
    Kuijken, Konrad H.
    Valentijn, Edwin A.
    EXPERIMENTAL ASTRONOMY, 2013, 35 (1-2) : 25 - 44
  • [9] Clustering of red sequence galaxies in the fourth data release of the Kilo-Degree Survey
    Vakili, Mohammadjavad
    Hoekstra, Henk
    Bilicki, Maciej
    Fortuna, Maria Cristina
    Kuijken, Konrad
    Wright, Angus H. H.
    Asgari, Marika
    Brown, Michael
    Dombrovskij, Elisabeth
    Erben, Thomas
    Giblin, Benjamin
    Heymans, Catherine
    Hildebrandt, Hendrik
    Johnston, Harry
    Joudaki, Shahab
    Kannawadi, Arun
    ASTRONOMY & ASTROPHYSICS, 2023, 675
  • [10] Galaxy EvolutionWithin the Kilo-Degree Survey
    Tortora, C.
    Napolitano, N. R.
    La Barbera, F.
    Roy, N.
    Radovich, M.
    Getman, F.
    Brescia, M.
    Cavuoti, S.
    Capaccioli, M.
    Longo, G.
    UNIVERSE OF DIGITAL SKY SURVEYS: A MEETING TO HONOUR THE 70TH BIRTHDAY OF MASSIMO CAPACCIOLI, 2016, 42 : 123 - 128