NEW DOUGLAS-RACHFORD ALGORITHMIC STRUCTURES AND THEIR CONVERGENCE ANALYSES

被引:11
|
作者
Censor, Yair [1 ]
Mansour, Rafiq [1 ]
机构
[1] Univ Haifa, Dept Math, IL-3498838 Haifa, Israel
关键词
algorithmic structures; convex feasibility problem; string-averaging; block-iterative; firmly nonexpansive; quasi-nonexpansive; strictly Fejer monotone; Douglas-Rachford; strong convergence; m-set-Douglas-Rachford operator; CONVEX FEASIBILITY PROBLEMS; PROJECTION METHODS; HILBERT-SPACE; SETS;
D O I
10.1137/141001536
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study new algorithmic structures with Douglas-Rachford (DR) operators to solve convex feasibility problems. We propose to embed the basic two-set-DR algorithmic operator into the string-averaging projections and into the block-iterative projection algorithmic structures, thereby creating new DR algorithmic schemes that include the recently proposed cyclic DR algorithm and the averaged DR algorithm as special cases. We further propose and investigate a new multiple-set-DR algorithmic operator. Convergence of all these algorithmic schemes is studied by using properties of strongly quasi-nonexpansive operators and firmly nonexpansive operators.
引用
收藏
页码:474 / 487
页数:14
相关论文
共 50 条
  • [41] On the minimal displacement vector of the Douglas-Rachford operator
    Banjac, Goran
    OPERATIONS RESEARCH LETTERS, 2021, 49 (02) : 197 - 200
  • [42] THE DOUGLAS-RACHFORD ALGORITHM CONVERGES ONLY WEAKLY
    Bui, Minh N.
    Combettes, Patrick L.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2020, 58 (02) : 1118 - 1120
  • [43] Douglas-Rachford splitting method for semidefinite programming
    Dong Y.
    Journal of Applied Mathematics and Computing, 2016, 51 (1-2) : 569 - 591
  • [44] CONVERGENCE ANALYSIS OF DOUGLAS-RACHFORD SPLITTING METHOD FOR "STRONGLY plus WEAKLY" CONVEX PROGRAMMING
    Guo, Ke
    Han, Deren
    Yuan, Xiaoming
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (04) : 1549 - 1577
  • [45] On Douglas-Rachford operators that fail to be proximal mappings
    Bauschke, Heinz H.
    Schaad, Jason
    Wang, Xianfu
    MATHEMATICAL PROGRAMMING, 2018, 168 (1-2) : 55 - 61
  • [46] Diagonal Scaling in Douglas-Rachford Splitting and ADMM
    Giselsson, Pontus
    Boyd, Stephen
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 5033 - 5039
  • [47] THE FUN IS FINITE: DOUGLAS-RACHFORD and SUDOKU PUZZLE - FINITE TERMINATION and LOCAL LINEAR CONVERGENCE
    Tovey R.
    Liang J.
    Journal of Applied and Numerical Optimization, 2021, 3 (03): : 435 - 456
  • [48] On non-ergodic convergence rate of Douglas-Rachford alternating direction method of multipliers
    He, Bingsheng
    Yuan, Xiaoming
    NUMERISCHE MATHEMATIK, 2015, 130 (03) : 567 - 577
  • [49] OPTIMAL CONTROL DUALITY AND THE DOUGLAS-RACHFORD ALGORITHM
    Burachik, Regina S.
    Caldwell, Bethany I.
    Kaya, C. Yalcin
    Moursi, Walaa M.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2024, 62 (01) : 680 - 698
  • [50] The Douglas-Rachford algorithm for the case of the sphere and the line
    Benoist, Joel
    JOURNAL OF GLOBAL OPTIMIZATION, 2015, 63 (02) : 363 - 380