NEW DOUGLAS-RACHFORD ALGORITHMIC STRUCTURES AND THEIR CONVERGENCE ANALYSES

被引:11
|
作者
Censor, Yair [1 ]
Mansour, Rafiq [1 ]
机构
[1] Univ Haifa, Dept Math, IL-3498838 Haifa, Israel
关键词
algorithmic structures; convex feasibility problem; string-averaging; block-iterative; firmly nonexpansive; quasi-nonexpansive; strictly Fejer monotone; Douglas-Rachford; strong convergence; m-set-Douglas-Rachford operator; CONVEX FEASIBILITY PROBLEMS; PROJECTION METHODS; HILBERT-SPACE; SETS;
D O I
10.1137/141001536
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study new algorithmic structures with Douglas-Rachford (DR) operators to solve convex feasibility problems. We propose to embed the basic two-set-DR algorithmic operator into the string-averaging projections and into the block-iterative projection algorithmic structures, thereby creating new DR algorithmic schemes that include the recently proposed cyclic DR algorithm and the averaged DR algorithm as special cases. We further propose and investigate a new multiple-set-DR algorithmic operator. Convergence of all these algorithmic schemes is studied by using properties of strongly quasi-nonexpansive operators and firmly nonexpansive operators.
引用
收藏
页码:474 / 487
页数:14
相关论文
共 50 条
  • [31] On the order of the operators in the Douglas-Rachford algorithm
    Bauschke, Heinz H.
    Moursi, Walaa M.
    OPTIMIZATION LETTERS, 2016, 10 (03) : 447 - 455
  • [32] The Douglas-Rachford Algorithm in the Absence of Convexity
    Borwein, Jonathan M.
    Sims, Brailey
    FIXED-POINT ALGORITHMS FOR INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2011, 49 : 93 - 109
  • [33] A convergent relaxation of the Douglas-Rachford algorithm
    Nguyen Hieu Thao
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 70 (03) : 841 - 863
  • [34] Convergence of the preconditioned proximal point method and Douglas-Rachford splitting in the absence of monotonicity
    Evens, Brecht
    Pas, Pieter
    Latafat, Puya
    Patrinos, Panagiotis
    MATHEMATICAL PROGRAMMING, 2025,
  • [35] Convergence analysis of two-step inertial Douglas-Rachford algorithm and application
    Avinash Dixit
    D. R. Sahu
    Pankaj Gautam
    T. Som
    Journal of Applied Mathematics and Computing, 2022, 68 : 953 - 977
  • [36] Convergence analysis of two-step inertial Douglas-Rachford algorithm and application
    Dixit, Avinash
    Sahu, D. R.
    Gautam, Pankaj
    Som, T.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (02) : 953 - 977
  • [37] A Lyapunov-type approach to convergence of the Douglas-Rachford algorithm for a nonconvex setting
    Dao, Minh N.
    Tam, Matthew K.
    JOURNAL OF GLOBAL OPTIMIZATION, 2019, 73 (01) : 83 - 112
  • [38] The rate of linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the Friedrichs angle
    Bauschke, Heinz H.
    Cruz, J. Y. Bello
    Nghia, Tran T. A.
    Phan, Hung M.
    Wang, Xianfu
    JOURNAL OF APPROXIMATION THEORY, 2014, 185 : 63 - 79
  • [39] THE DOUGLAS-RACHFORD ALGORITHM WITH NEW ERROR SEQUENCES FOR AN INCLUSION PROBLEM
    Wang, Yamin
    Wang, Fenghui
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2022, 2022
  • [40] Shadow Douglas-Rachford Splitting for Monotone Inclusions
    Csetnek, Ernoe Robert
    Malitsky, Yura
    Tam, Matthew K.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2019, 80 (03): : 665 - 678