Automatically Produced Algorithms for the Generalized Minimum Spanning Tree Problem

被引:8
|
作者
Contreras-Bolton, Carlos [1 ]
Rey, Carlos [2 ]
Ramos-Cossio, Sergio [2 ]
Rodriguez, Claudio [2 ]
Gatica, Felipe [2 ]
Parada, Victor [2 ]
机构
[1] Univ Bologna, DEI, Viale Risorgimento 2, I-40136 Bologna, Italy
[2] Univ Santiago Chile, Dept Ingn Informat, 3659 Avenida Ecuador, Santiago 9170124, Chile
关键词
SEARCH;
D O I
10.1155/2016/1682925
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The generalized minimum spanning tree problem consists of finding a minimum cost spanning tree in an undirected graph for which the vertices are divided into clusters. Such spanning tree includes only one vertex from each cluster. Despite the diverse practical applications for this problem, the NP-hardness continues to be a computational challenge. Good quality solutions for some instances of the problem have been found by combining specific heuristics or by including them within a metaheuristic. However studied combinations correspond to a subset of all possible combinations. In this study a technique based on a genotype-phenotype genetic algorithm to automatically construct new algorithms for the problem, which contain combinations of heuristics, is presented. The produced algorithms are competitive in terms of the quality of the solution obtained. This emerges from the comparison of the performance with problem-specific heuristics and with metaheuristic approaches.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] ON THE HISTORY OF THE MINIMUM SPANNING TREE PROBLEM
    GRAHAM, RL
    HELL, P
    ANNALS OF THE HISTORY OF COMPUTING, 1985, 7 (01): : 43 - 57
  • [32] A constrained minimum spanning tree problem
    Chen, GT
    Zhang, GC
    COMPUTERS & OPERATIONS RESEARCH, 2000, 27 (09) : 867 - 875
  • [33] The minimum risk spanning tree problem
    Chen, Xujin
    Hu, Jie
    Hu, Xiaodong
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, PROCEEDINGS, 2007, 4616 : 81 - +
  • [34] THE PROBABILISTIC MINIMUM SPANNING TREE PROBLEM
    BERTSIMAS, DJ
    NETWORKS, 1990, 20 (03) : 245 - 275
  • [35] THE QUADRATIC MINIMUM SPANNING TREE PROBLEM
    ASSAD, A
    XU, WX
    NAVAL RESEARCH LOGISTICS, 1992, 39 (03) : 399 - 417
  • [36] The Minimum Moving Spanning Tree Problem
    Akitaya H.A.
    Biniaz A.
    Bose P.
    De Carufel J.-L.
    Maheshwari A.
    da Silveira L.F.S.X.
    Smid M.
    Journal of Graph Algorithms and Applications, 2023, 27 (01) : 1 - 18
  • [37] The Distributed Minimum Spanning Tree Problem
    Schmid, Stefan
    Pandurangan, Gopal
    Robinson, Peter
    Scquizzato, Michele
    BULLETIN OF THE EUROPEAN ASSOCIATION FOR THEORETICAL COMPUTER SCIENCE, 2018, (125): : 51 - 80
  • [38] ON THE MINIMUM DIAMETER SPANNING TREE PROBLEM
    HASSIN, R
    TAMIR, A
    INFORMATION PROCESSING LETTERS, 1995, 53 (02) : 109 - 111
  • [39] The minimum spanning tree problem in archaeology
    Hage, P
    Harary, F
    James, B
    AMERICAN ANTIQUITY, 1996, 61 (01) : 149 - 155
  • [40] The Minimum Moving Spanning Tree Problem
    Akitaya, Hugo A.
    Biniaz, Ahmad
    Bose, Prosenjit
    De Carufel, Jean-Lou
    Maheshwari, Anil
    da Silveira, Luis Fernando Schultz Xavier
    Smid, Michiel
    ALGORITHMS AND DATA STRUCTURES, WADS 2021, 2021, 12808 : 15 - 28