The Minimum Moving Spanning Tree Problem

被引:0
|
作者
Akitaya, Hugo A. [1 ]
Biniaz, Ahmad [3 ]
Bose, Prosenjit [2 ]
De Carufel, Jean-Lou [4 ]
Maheshwari, Anil [2 ]
da Silveira, Luis Fernando Schultz Xavier [2 ]
Smid, Michiel [2 ]
机构
[1] Univ Massachusetts Lowell, Dept Comp Sci, Lowell, MA USA
[2] Carleton Univ, Sch Comp Sci, Ottawa, ON, Canada
[3] Univ Windsor, Sch Comp Sci, Windsor, ON, Canada
[4] Univ Ottawa, Sch Elect Engn & Comp Sci, Ottawa, ON, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
Minimum spanning tree; Moving points; NP-hardness; Convex distance function; Approximation algorithms;
D O I
10.1007/978-3-030-83508-8_2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate the problem of finding a spanning tree of a set of moving points in the plane that minimizes the maximum total weight (sum of Euclidean distances between edge endpoints) or the maximum bottleneck throughout the motion. The output is a single tree, i.e., it does not change combinatorially during the movement of the points. We call these trees the minimum moving spanning tree, and the minimum bottleneck moving spanning tree, respectively. We show that, although finding the minimum bottleneck moving spanning tree can be done in O(n(2)) time, it is NP-hard to compute the minimum moving spanning tree. We provide a simple O(n(2))-time 2-approximation and a O(n log n)-time (2 + epsilon)-approximation for the latter problem.
引用
收藏
页码:15 / 28
页数:14
相关论文
共 50 条
  • [1] The Minimum Moving Spanning Tree Problem
    Akitaya, Hugo A.
    Biniaz, Ahmad
    Bose, Prosenjit
    De Carufel, Jean-Lou
    Maheshwari, Anil
    da Silveira, Luís Fernando Schultz Xavier
    Smid, Michiel
    [J]. Journal of Graph Algorithms and Applications, 2023, 27 (01) : 1 - 18
  • [2] On the minimum label spanning tree problem
    Krumke, SO
    Wirth, HC
    [J]. INFORMATION PROCESSING LETTERS, 1998, 66 (02) : 81 - 85
  • [3] A constrained minimum spanning tree problem
    Chen, GT
    Zhang, GC
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2000, 27 (09) : 867 - 875
  • [4] ON THE GENERALIZED MINIMUM SPANNING TREE PROBLEM
    MYUNG, YS
    LEE, CH
    TCHA, DW
    [J]. NETWORKS, 1995, 26 (04) : 231 - 241
  • [5] ON THE HISTORY OF THE MINIMUM SPANNING TREE PROBLEM
    GRAHAM, RL
    HELL, P
    [J]. ANNALS OF THE HISTORY OF COMPUTING, 1985, 7 (01): : 43 - 57
  • [6] The minimum risk spanning tree problem
    Chen, Xujin
    Hu, Jie
    Hu, Xiaodong
    [J]. COMBINATORIAL OPTIMIZATION AND APPLICATIONS, PROCEEDINGS, 2007, 4616 : 81 - +
  • [7] The Distributed Minimum Spanning Tree Problem
    Schmid, Stefan
    Pandurangan, Gopal
    Robinson, Peter
    Scquizzato, Michele
    [J]. BULLETIN OF THE EUROPEAN ASSOCIATION FOR THEORETICAL COMPUTER SCIENCE, 2018, (125): : 51 - 80
  • [8] ON THE MINIMUM DIAMETER SPANNING TREE PROBLEM
    HASSIN, R
    TAMIR, A
    [J]. INFORMATION PROCESSING LETTERS, 1995, 53 (02) : 109 - 111
  • [9] The minimum spanning tree problem in archaeology
    Hage, P
    Harary, F
    James, B
    [J]. AMERICAN ANTIQUITY, 1996, 61 (01) : 149 - 155
  • [10] THE PROBABILISTIC MINIMUM SPANNING TREE PROBLEM
    BERTSIMAS, DJ
    [J]. NETWORKS, 1990, 20 (03) : 245 - 275