Random walks in local dynamics of network losses

被引:3
|
作者
Yurkevich, I. V. [1 ]
Lerner, I. V.
Stepanenko, A. S.
Constantinou, C. C.
机构
[1] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England
[2] Univ Birmingham, Sch Engn, Birmingham B15 2TT, W Midlands, England
来源
PHYSICAL REVIEW E | 2006年 / 74卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
JAMMING TRANSITION; SCALE; INTERNET;
D O I
10.1103/PhysRevE.74.046120
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We suggest a model for data losses in a single node (memory buffer) of a packet-switched network (like the Internet) which reduces to one-dimensional discrete random walks with unusual boundary conditions. By construction, the model has critical behavior with a sharp transition from exponentially small to finite losses with increasing data arrival rate. We show that for a finite-capacity buffer at the critical point the loss rate exhibits strong fluctuations and non-Markovian power-law correlations in time, in spite of the Markovian character of the data arrival process.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] A local limit theorem for random walks in balanced environments
    Stenlund, Mikko
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2013, 18 : 1 - 13
  • [42] STRONG LOCAL SURVIVAL OF BRANCHING RANDOM WALKS IS NOT MONOTONE
    Bertacchi, Daniela
    Zucca, Fabio
    ADVANCES IN APPLIED PROBABILITY, 2014, 46 (02) : 400 - 421
  • [43] Local probabilities for random walks conditioned to stay positive
    Vladimir A. Vatutin
    Vitali Wachtel
    Probability Theory and Related Fields, 2009, 143 : 177 - 217
  • [44] Local probabilities for random walks conditioned to stay positive
    Vatutin, Vladimir A.
    Wachtel, Vitali
    PROBABILITY THEORY AND RELATED FIELDS, 2009, 143 (1-2) : 177 - 217
  • [45] On the Local Time of Random Walks Associated with Gegenbauer Polynomials
    Guillotin-Plantard, Nadine
    JOURNAL OF THEORETICAL PROBABILITY, 2011, 24 (04) : 1157 - 1169
  • [46] Local limit theorem for random walks on symmetric spaces
    Kogler, Constantin
    JOURNAL D ANALYSE MATHEMATIQUE, 2025,
  • [47] Random walks, random sequences, and nonlinear dynamics in human optokinetic nystagmus
    Trillenberg, P
    Gross, C
    Shelhamer, M
    JOURNAL OF APPLIED PHYSIOLOGY, 2001, 91 (04) : 1750 - 1759
  • [48] Local Limit Theorems for random walks in a 1D random environment
    Dolgopyat, D.
    Goldsheid, I.
    ARCHIV DER MATHEMATIK, 2013, 101 (02) : 191 - 200
  • [49] A LOCAL LIMIT THEOREM FOR RANDOM WALKS IN RANDOM SCENERY AND ON RANDOMLY ORIENTED LATTICES
    Castell, Fabienne
    Guillotin-Plantard, Nadine
    Pene, Francoise
    Schapira, Bruno
    ANNALS OF PROBABILITY, 2011, 39 (06): : 2079 - 2118
  • [50] Correlated dynamics and random walks in aqueous proton diffusion
    Fischer, Sean
    Dunlap, Brett
    Gunlycke, Daniel
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257