Local probabilities for random walks conditioned to stay positive

被引:55
|
作者
Vatutin, Vladimir A. [1 ]
Wachtel, Vitali [2 ]
机构
[1] Steklov Math Inst RAS, Moscow 19991, Russia
[2] Tech Univ Munich, Zentrum Math, D-85747 Garching, Germany
基金
俄罗斯基础研究基金会;
关键词
Limit theorems; Random walks; Stable laws; LIMIT-THEOREM; FLUCTUATION; HEIGHT;
D O I
10.1007/s00440-007-0124-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let S-0 = 0, {S-n, n >= 1} be a random walk generated by a sequence of i.i.d. random variables X-1, X-2,... and let tau(-) = min{n >= 1 : S-n <= 0} and tau(+) = min{n >= 1 : S-n > 0}. Assuming that the distribution of X-1 belongs to the domain of attraction of an alpha-stable law we study the asymptotic behavior, as n -> infinity, of the local probabilities P(tau(+/-) = n) and prove the Gnedenko and Stone type conditional local limit theorems for the probabilities P(S-n is an element of [x, x + Delta)vertical bar tau(-) > n) with fixed Delta and x = x(n) is an element of (0, infinity).
引用
收藏
页码:177 / 217
页数:41
相关论文
共 50 条
  • [1] Local probabilities for random walks conditioned to stay positive
    Vladimir A. Vatutin
    Vitali Wachtel
    [J]. Probability Theory and Related Fields, 2009, 143 : 177 - 217
  • [2] Local probabilities for random walks with negative drift conditioned to stay nonnegative
    Denisov, Denis
    Vatutin, Vladimir
    Wachtel, Vitali
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19 : 1 - 18
  • [3] A local limit theorem for random walks conditioned to stay positive
    Francesco Caravenna
    [J]. Probability Theory and Related Fields, 2005, 133 : 508 - 530
  • [4] A local limit theorem for random walks conditioned to stay positive
    Caravenna, F
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2005, 133 (04) : 508 - 530
  • [5] Scaling limit of the local time of random walks conditioned to stay positive
    Hong, Wenming
    Sun, Mingyang
    [J]. JOURNAL OF APPLIED PROBABILITY, 2024, 61 (03) : 1060 - 1074
  • [6] Invariance principles for random walks conditioned to stay positive
    Caravenna, Francesco
    Chaumont, Loic
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2008, 44 (01): : 170 - 190
  • [7] GROWTH OF RANDOM-WALKS CONDITIONED TO STAY POSITIVE
    RITTER, GA
    [J]. ANNALS OF PROBABILITY, 1981, 9 (04): : 699 - 704
  • [8] Large deviation results for random walks conditioned to stay positive
    Doney, Ronald A.
    Jones, Elinor M.
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2012, 17 : 1 - 11
  • [9] RANDOM-WALKS WITH NEGATIVE DRIFT CONDITIONED TO STAY POSITIVE
    IGLEHART, DL
    [J]. JOURNAL OF APPLIED PROBABILITY, 1974, 11 (04) : 742 - 751
  • [10] INVARIANCE PRINCIPLES FOR INTEGRATED RANDOM WALKS CONDITIONED TO STAY POSITIVE
    Baer, Michael
    Duraj, Jetlir
    Wachtel, Vitali
    [J]. ANNALS OF APPLIED PROBABILITY, 2023, 33 (01): : 127 - 160