Random walks in local dynamics of network losses

被引:3
|
作者
Yurkevich, I. V. [1 ]
Lerner, I. V.
Stepanenko, A. S.
Constantinou, C. C.
机构
[1] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England
[2] Univ Birmingham, Sch Engn, Birmingham B15 2TT, W Midlands, England
来源
PHYSICAL REVIEW E | 2006年 / 74卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
JAMMING TRANSITION; SCALE; INTERNET;
D O I
10.1103/PhysRevE.74.046120
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We suggest a model for data losses in a single node (memory buffer) of a packet-switched network (like the Internet) which reduces to one-dimensional discrete random walks with unusual boundary conditions. By construction, the model has critical behavior with a sharp transition from exponentially small to finite losses with increasing data arrival rate. We show that for a finite-capacity buffer at the critical point the loss rate exhibits strong fluctuations and non-Markovian power-law correlations in time, in spite of the Markovian character of the data arrival process.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Complex Network Comparison Using Random Walks
    Lu, Shan
    Kang, Jieqi
    Gong, Weibo
    Towsley, Don
    WWW'14 COMPANION: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, 2014, : 727 - 730
  • [32] Network community detection and clustering with random walks
    Ballal, Aditya
    Kion-Crosby, Willow B.
    Morozov, Alexandre, V
    PHYSICAL REVIEW RESEARCH, 2022, 4 (04):
  • [33] Random walks on the Apollonian network with a single trap
    Zhang, Zhongzhi
    Guan, Jihong
    Xie, Wenlei
    Qi, Yi
    Zhou, Shuigeng
    EPL, 2009, 86 (01)
  • [34] Network meta-analysis and random walks
    Davies, Annabel L.
    Papakonstantinou, Theodoros
    Nikolakopoulou, Adriani
    Ruecker, Gerta
    Galla, Tobias
    STATISTICS IN MEDICINE, 2022, 41 (12) : 2091 - 2114
  • [35] Estimating network parameters using random walks
    Cooper, Colin
    Radzik, Tomasz
    Siantos, Yiannis
    SOCIAL NETWORK ANALYSIS AND MINING, 2014, 4 (01) : 1 - 19
  • [36] On the Local Time of Random Walks Associated with Gegenbauer Polynomials
    Nadine Guillotin-Plantard
    Journal of Theoretical Probability, 2011, 24 : 1157 - 1169
  • [37] Optimal exploration of random walks with local bias on networks
    Hidalgo Calva, Christopher Sebastian
    Riascos, Alejandro P.
    PHYSICAL REVIEW E, 2022, 105 (04)
  • [38] A LOCAL LIMIT THEOREM FOR A CERTAIN CLASS OF RANDOM WALKS
    ROSENKRANTZ, WA
    ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (04): : 855 - +
  • [39] Universality of local times of killed and reflected random walks
    Denisov, Denis
    Wachtel, Vitali
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2016, 21
  • [40] Random walks in nonuniform environments with local dynamic interactions
    Baker, Christopher M.
    Hughes, Barry D.
    Landman, Kerry A.
    PHYSICAL REVIEW E, 2013, 88 (04):