Fabrication of nanoelectromechanical resonators using a cryogenic etching technique

被引:3
|
作者
Nelson-Fitzpatrick, N. [1 ]
Westra, K.
Li, P.
McColman, S.
Wilding, N.
Evoy, S.
机构
[1] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2V4, Canada
[2] Univ Alberta, Natl Inst Nanotechnol, Edmonton, AB T6G 2V4, Canada
[3] Univ Alberta, NanoFab, Edmonton, AB T6G 2V4, Canada
[4] Appl Nanotools Inc, Edmonton, AB T6E 5B6, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1116/1.2366608
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The details of the fabrication of nanomechanical resonators through cryogenic etching methodology is described. The cryogenic etching is conducted in an Oxford Plasmalab 100 DRIE system. The instrument is equipped with a liquid nitrogen cooled chuck and a temperature controller to maintain the temperature of the silicon wafer at a set value. The etching process consists of four steps. The wafer is loaded into the plasma reactor and rested on the cooled chuck for five minute to achieve the desired temperature. An O2 plasma is run for 10 seconds to clean the silicon substrate and prepare it for etching. The SF6/O2 etching plasma is lit to etch the substrate. A helium release step is used to ensure that the process wafer is not stuck to the cooled chuck. Control over the relative strength of passivation and the etch steps has enabled the machining of high-aspect-ratio NEMS with lateral dimensions as small as 150 nm.
引用
收藏
页码:2769 / 2771
页数:3
相关论文
共 50 条
  • [41] Wafer-scale fabrication of self-actuated piezoelectric nanoelectromechanical resonators based on lead zirconate titanate (PZT)
    Dezest, D.
    Thomas, O.
    Mathieu, F.
    Mazenq, L.
    Soyer, C.
    Costecalde, J.
    Remiens, D.
    Deue, J. F.
    Nicu, L.
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2015, 25 (03)
  • [42] The fabrication of silicon nanostructures by local gallium implantation and cryogenic deep reactive ion etching
    Chekurov, N.
    Grigoras, K.
    Peltonen, A.
    Franssila, S.
    Tittonen, I.
    [J]. NANOTECHNOLOGY, 2009, 20 (06)
  • [43] Cryogenic Microwave Characterization of Kapton Polyimide Using Superconducting Resonators
    Bai, Rujun
    Hernandez, George A.
    Cao, Yang
    Sellers, John A.
    Ellis, Charles D.
    Tuckerman, David B.
    Hamilton, Michael C.
    [J]. 2016 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2016,
  • [44] Cryogenic inductively coupled plasma etching for fabrication of tapered through-silicon vias
    Kamto, A.
    Divan, R.
    Sumant, A. V.
    Burkett, S. L.
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2010, 28 (04): : 719 - 725
  • [45] Localized Gallium Doping and Cryogenic Deep Reactive Ion Etching in Fabrication of Silicon Nanostructures
    Chekurov, Nikolai
    Grigoras, Kestutis
    Peltonen, Antti
    Franssila, Sami
    Tittonen, Ilkka
    [J]. ION BEAMS AND NANO-ENGINEERING, 2010, 1181 : 21 - 26
  • [46] Optical Cryogenic Silicon Resonators
    Legero, T.
    Matei, D. G.
    Weyrich, R.
    Riehle, F.
    Sterr, U.
    Zhang, W.
    Sonderhouse, L.
    Robinson, J. M.
    Ye, J.
    [J]. 2016 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS (CPEM 2016), 2016,
  • [47] Cryogenic Characterization of SAW Resonators
    Gugliandolo, Giovanni
    Capra, Pier Paolo
    Campobello, Giuseppe
    Donato, Nicola
    [J]. 2019 14TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES, SYSTEMS AND SERVICES IN TELECOMMUNICATIONS (TELSIKS 2019), 2019, : 311 - 314
  • [48] Nanomechanical Resonators for Cryogenic Research
    T. Kamppinen
    V. B. Eltsov
    [J]. Journal of Low Temperature Physics, 2019, 196 : 283 - 292
  • [49] Mechanical gating of coupled nanoelectromechanical resonators operating at radio frequency
    Pescini, L
    Lorenz, H
    Blick, RH
    [J]. APPLIED PHYSICS LETTERS, 2003, 82 (03) : 352 - 354
  • [50] Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies
    Wang, Zenghui
    Jia, Hao
    Zheng, Xuqian
    Yang, Rui
    Wang, Zefang
    Ye, G. J.
    Chen, X. H.
    Shan, Jie
    Feng, Philip X-L
    [J]. NANOSCALE, 2015, 7 (03) : 877 - 884