The Brezis-Nirenberg problem for fractional elliptic operators

被引:1
|
作者
Chen, Ko-Shin [1 ]
Montenegro, Marcos [2 ]
Yan, Xiaodong [1 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[2] Univ Fed Minas Gerais, Dept Matemat, BR-30123970 Belo Horizonte, MG, Brazil
关键词
Fractional elliptic operator; critical exponent; existence; nonexistence; CRITICAL SOBOLEV EXPONENTS; NONLINEAR EQUATIONS; EXTENSION PROBLEM; LAPLACIAN; REGULARITY; INEQUALITIES; IDENTITY;
D O I
10.1002/mana.201600072
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L= div (A(x)delta) be a uniformly elliptic operator in divergence form in a bounded open subset of Rn. We study the effect of the operator L on the existence and nonexistence of positive solutions of the nonlocal Brezis-Nirenberg problem where (-L)s denotes the fractional power of -L with zero Dirichlet boundary values on , 0<s<1, n>2s and is a real parameter. By assuming A(x)A(x0) for all x and A(x)A(x0)+|x-x0|sigma In near some point x0, we prove existence theorems for any (0,1,s(-L)), where 1,s(-L) denotes the first Dirichlet eigenvalue of (-L)s. Our existence result holds true for sigma>2s and n4s in the interior case (x0) and for sigma>2s(n-2s)n-4s and n>4s in the boundary case (x0). Nonexistence for star-shaped domains is obtained for any 0.
引用
收藏
页码:1491 / 1511
页数:21
相关论文
共 50 条