Symmetry distribution between hook length and part length for partitions
被引:1
|
作者:
Bessenrodt, Christine
论文数: 0引用数: 0
h-index: 0
机构:
Leibniz Univ Hannover, Fak Math & Phys, D-30167 Hannover, GermanyUniv Strasbourg, IRMA, UMR 7501, F-67084 Strasbourg, France
Bessenrodt, Christine
[3
]
Han, Guo-Niu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Strasbourg, IRMA, UMR 7501, F-67084 Strasbourg, France
CNRS, F-67084 Strasbourg, FranceUniv Strasbourg, IRMA, UMR 7501, F-67084 Strasbourg, France
Han, Guo-Niu
[1
,2
]
机构:
[1] Univ Strasbourg, IRMA, UMR 7501, F-67084 Strasbourg, France
It is known that the two statistics oil integer partitions "hook length" and "part length" are equidistributed over the set of all partitions of n. We extend this result by proving that the bivariate joint generating function by those two statistics is symmetric. Our method is based oil a generating function by a triple Statistic much easier to calculate. (C) 2009 Elsevier B.V. All rights reserved.
机构:
Univ Strasbourg, IRMA UMR 7501, F-67084 Strasbourg, France
CNRS, F-67084 Strasbourg, FranceUniv Strasbourg, IRMA UMR 7501, F-67084 Strasbourg, France