Symmetry distribution between hook length and part length for partitions

被引:1
|
作者
Bessenrodt, Christine [3 ]
Han, Guo-Niu [1 ,2 ]
机构
[1] Univ Strasbourg, IRMA, UMR 7501, F-67084 Strasbourg, France
[2] CNRS, F-67084 Strasbourg, France
[3] Leibniz Univ Hannover, Fak Math & Phys, D-30167 Hannover, Germany
关键词
Partitions; Hook lengths; Hook type; Symmetry distribution;
D O I
10.1016/j.disc.2009.05.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that the two statistics oil integer partitions "hook length" and "part length" are equidistributed over the set of all partitions of n. We extend this result by proving that the bivariate joint generating function by those two statistics is symmetric. Our method is based oil a generating function by a triple Statistic much easier to calculate. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:6070 / 6073
页数:4
相关论文
共 50 条
  • [31] A BIJECTIVE PROOF OF THE HOOK-LENGTH FORMULA
    FRANZBLAU, DS
    ZEILBERGER, D
    JOURNAL OF ALGORITHMS, 1982, 3 (04) : 317 - 343
  • [32] Polynomiality of some hook-length statistics
    Greta Panova
    The Ramanujan Journal, 2012, 27 : 349 - 356
  • [33] Clavicular Length: The Assumption of Symmetry
    Cunningham, Brian P.
    McLaren, Alex
    Richardson, Michael
    McLemore, Ryan
    ORTHOPEDICS, 2013, 36 (03) : E343 - E347
  • [34] Effect of hook subunit concentration on assembly and control of length of the flagellar hook of Salmonella
    Muramoto, K
    Makishima, S
    Aizawa, S
    Macnab, RM
    JOURNAL OF BACTERIOLOGY, 1999, 181 (18) : 5808 - 5813
  • [35] The minimum length of a base for the symmetric group acting on partitions
    Benbenishty, Carmit
    Cohen, Jonathan A.
    Niemeyer, Alice C.
    EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (06) : 1575 - 1581
  • [36] Ordered partitions avoiding a permutation pattern of length 3
    Chen, William Y. C.
    Dai, Alvin Y. L.
    Zhou, Robin D. P.
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 36 : 416 - 424
  • [37] Bilabelled increasing trees and hook-length formulae
    Kuba, Markus
    Panholzer, Alois
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (02) : 248 - 258
  • [38] On conjectures regarding the Nekrasov–Okounkov hook length formula
    Bernhard Heim
    Markus Neuhauser
    Archiv der Mathematik, 2019, 113 : 355 - 366
  • [39] Hook length biases and general linear partition inequalities
    Cristina Ballantine
    Hannah E. Burson
    William Craig
    Amanda Folsom
    Boya Wen
    Research in the Mathematical Sciences, 2023, 10
  • [40] Hook Length Polynomials for Plane Forests of a Certain Type
    Fu Liu
    Annals of Combinatorics, 2009, 13 : 315 - 322