A multiset hook length formula and some applications

被引:3
|
作者
Dehaye, Paul-Olivier [1 ]
Han, Guo-Niu [2 ,3 ]
机构
[1] ETH, Dept Math, CH-8092 Zurich, Switzerland
[2] Univ Strasbourg, Inst Rech Math Avancee, F-67084 Strasbourg, France
[3] CNRS, F-67084 Strasbourg, France
关键词
Integer partitions; Hook length; q-series; Congruence relations; t-cores; MACDONALD IDENTITIES; TOPOLOGICAL VERTEX; ELEMENTARY PROOF; PARTITIONS;
D O I
10.1016/j.disc.2011.08.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A multiset hook length formula for integer partitions is established by using combinatorial manipulation. As special cases, we rederive three hook length formulas, two of them obtained by Nekrasov-Okounkov, the third one by Iqbal. Nazir, Raza and Saleem, who have made use of the cyclic symmetry of the topological vertex. A multiset hook-content formula is also proved. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2690 / 2702
页数:13
相关论文
共 50 条
  • [1] The weighted hook length formula
    Ciocan-Fontanine, Ionut
    Konvalinka, Matjaz
    Pak, Igor
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (06) : 1703 - 1717
  • [2] A simple proof of the Hook Length Formula
    Glass, K
    Ng, CK
    AMERICAN MATHEMATICAL MONTHLY, 2004, 111 (08): : 700 - 704
  • [3] A BIJECTIVE PROOF OF THE HOOK-LENGTH FORMULA
    FRANZBLAU, DS
    ZEILBERGER, D
    JOURNAL OF ALGORITHMS, 1982, 3 (04) : 317 - 343
  • [4] THE NEKRASOV-OKOUNKOV HOOK LENGTH FORMULA: REFINEMENT, ELEMENTARY PROOF, EXTENSION AND APPLICATIONS
    Han, Guo-Niu
    ANNALES DE L INSTITUT FOURIER, 2010, 60 (01) : 1 - 29
  • [5] A REDUCTION FORMULA FOR LENGTH-TWO POLYLOGARITHMS AND SOME APPLICATIONS
    Lalin, Matilde N.
    Lechasseur, Jean-Sebastien
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2018, 59 (02): : 285 - 309
  • [6] On an identity of Glass and Ng concerning the hook length formula
    Zhang, Rong
    DISCRETE MATHEMATICS, 2010, 310 (17-18) : 2440 - 2442
  • [7] The hook-length formula and generalised Catalan numbers
    Griffiths, Martin
    Lord, Nick
    MATHEMATICAL GAZETTE, 2011, 95 (532): : 23 - 30
  • [8] On conjectures regarding the Nekrasov–Okounkov hook length formula
    Bernhard Heim
    Markus Neuhauser
    Archiv der Mathematik, 2019, 113 : 355 - 366
  • [9] The weighted hook length formula III: Shifted tableaux
    Konvalinka, Matjaz
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [10] On Postnikov's hook length formula for binary trees
    Chen, William Y. C.
    Yang, Laura L. M.
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (07) : 1563 - 1565