Grand and small Xp spaces and generalized duality

被引:0
|
作者
Singh, Monika [1 ]
机构
[1] Univ Delhi, Dept Math, Lady Shri Ram Coll Women, New Delhi 110024, India
关键词
Banach function space; Grand X-p space; Fatou property; Associate space; Small X-p space;
D O I
10.1007/s11117-021-00819-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we extend the construction of Grand and Small Lebesgue spaces for the case of general Banach function spaces on finite measure space. We call these spaces the grand and the small X-p spaces. We prove results on several fundamental properties of these spaces, namely, duality, rearrangement invariant and the other properties that are transferred from the original space X to the corresponding grand and small spaces. In particular, on duality, we show that the generalized associate space of the small X-p space with respect to the Banach function space X is the corresponding grand X-p space.
引用
收藏
页码:1469 / 1488
页数:20
相关论文
共 50 条
  • [1] A direct approach to the duality of grand and small Lebesgue spaces
    Di Fratta, Giovanni
    Fiorenza, Alberto
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (07) : 2582 - 2592
  • [2] Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces
    Yi Liu
    Wen Yuan
    Czechoslovak Mathematical Journal, 2017, 67 : 715 - 732
  • [3] Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces
    Liu, Yi
    Yuan, Wen
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2017, 67 (03) : 715 - 732
  • [4] On the Duality of Grand Bochner–Lebesgue Spaces
    P. Jain
    M. Singh
    A. P. Singh
    V. D. Stepanov
    Mathematical Notes, 2020, 107 : 247 - 256
  • [5] A duality of generalized metric spaces
    Antoniuk, Sylwia
    Waszkiewicz, Pawel
    TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (17) : 2371 - 2381
  • [6] Sawyer Duality Principle in Grand Lebesgue Spaces
    Jain, P.
    Singh, A. P.
    Singh, M.
    Stepanov, V. D.
    DOKLADY MATHEMATICS, 2018, 97 (01) : 18 - 19
  • [7] Sawyer Duality Principle in Grand Lebesgue Spaces
    P. Jain
    A. P. Singh
    M. Singh
    V. D. Stepanov
    Doklady Mathematics, 2018, 97 : 18 - 19
  • [8] On the Duality of Grand Bochner-Lebesgue Spaces
    Jain, P.
    Singh, M.
    Singh, A. P.
    Stepanov, V. D.
    MATHEMATICAL NOTES, 2020, 107 (1-2) : 247 - 256
  • [9] The Boundedness of the Riesz Potential Operator from Generalized Grand Lebesgue Spaces to Generalized Grand Morrey Spaces
    Umarkhadzhiev, Salaudin
    OPERATOR THEORY, OPERATOR ALGEBRAS AND APPLICATIONS, 2014, 242 : 363 - 373
  • [10] DUALITY AND COMPACTNESS IN GENERALIZED KOTHE SPACES
    CLAUZURE, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (24): : 1710 - &