A duality of generalized metric spaces

被引:4
|
作者
Antoniuk, Sylwia [1 ]
Waszkiewicz, Pawel [1 ]
机构
[1] Jagiellonian Univ, PL-30348 Krakow, Poland
关键词
Lawson duality; Generalized metric space; Continuous dcpo; Way-below; TOPOLOGY; COMPLETION;
D O I
10.1016/j.topol.2011.04.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a duality theory for Lawvere's generalized metric spaces that extends the Lawson duality for continuous dcpos and open filter reflecting maps: we prove that the category of relatively cocomplete and continuous vertical bar 0, infinity vertical bar-categories considered with open filter reflecting maps is self-dual. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2371 / 2381
页数:11
相关论文
共 50 条
  • [1] Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces
    Yi Liu
    Wen Yuan
    [J]. Czechoslovak Mathematical Journal, 2017, 67 : 715 - 732
  • [2] Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces
    Liu, Yi
    Yuan, Wen
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2017, 67 (03) : 715 - 732
  • [3] The Duality of Similarity and Metric Spaces
    Rozinek, Ondrej
    Mares, Jan
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (04): : 1 - 18
  • [4] Metric duality in Euclidean spaces
    Vaisala, J
    [J]. MATHEMATICA SCANDINAVICA, 1997, 80 (02) : 249 - 288
  • [5] Duality of Moduli in Regular Metric Spaces
    Lohvansuu, Atte
    Rajala, Kai
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2021, 70 (03) : 1087 - 1102
  • [6] GENERALIZED METRIC SPACES AND DEVELOPABLE SPACES
    Tanaka, Yoshio
    [J]. TOPOLOGY PROCEEDINGS, VOL 34, 2009, 34 : 97 - 114
  • [7] ON GENERALIZED METRIC SPACES: A SURVEY
    Kadelburg, Zoran
    Radenovic, Stojan
    [J]. TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, 5 (01): : 3 - 13
  • [8] Localic metric spaces and the localic Gelfand duality
    Henry, Simon
    [J]. ADVANCES IN MATHEMATICS, 2016, 294 : 634 - 688
  • [9] Duality properties of metric Sobolev spaces and capacity
    Ambrosio, Luigi
    Savare, Giuseppe
    [J]. MATHEMATICS IN ENGINEERING, 2021, 3 (01): : 1 - 31
  • [10] GENERALIZED METRIC SPACES: SURVEY
    Dosenovic, Tatjana
    Radenovic, Stojan
    Sedghi, Shaban
    [J]. TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, 9 (01): : 3 - 17