Grand and small Xp spaces and generalized duality

被引:0
|
作者
Singh, Monika [1 ]
机构
[1] Univ Delhi, Dept Math, Lady Shri Ram Coll Women, New Delhi 110024, India
关键词
Banach function space; Grand X-p space; Fatou property; Associate space; Small X-p space;
D O I
10.1007/s11117-021-00819-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we extend the construction of Grand and Small Lebesgue spaces for the case of general Banach function spaces on finite measure space. We call these spaces the grand and the small X-p spaces. We prove results on several fundamental properties of these spaces, namely, duality, rearrangement invariant and the other properties that are transferred from the original space X to the corresponding grand and small spaces. In particular, on duality, we show that the generalized associate space of the small X-p space with respect to the Banach function space X is the corresponding grand X-p space.
引用
收藏
页码:1469 / 1488
页数:20
相关论文
共 50 条
  • [31] GENERALIZED DUALITY OF SOME BANACH FUNCTION-SPACES
    MALIGRANDA, L
    PERSSON, LE
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1989, 92 (03): : 323 - 338
  • [32] GENERALIZED q-FOCK SPACES AND DUALITY THEOREMS
    Barhoumi, Abdessatar
    Ouerdiane, Habib
    QUANTUM PROBABILITY AND INFINITE DIMENSIONAL ANALYSIS, PROCEEDINGS, 2007, 20 : 90 - +
  • [33] Duality in vector optimization in Banach spaces with generalized convexity
    Mishra, SK
    Giorgi, G
    Wang, SY
    JOURNAL OF GLOBAL OPTIMIZATION, 2004, 29 (04) : 415 - 424
  • [34] Generalized duality and product of some noncommutative symmetric spaces
    Han, Yazhou
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (10)
  • [35] Duality in Vector Optimization in Banach Spaces with Generalized Convexity
    S.K. Mishra
    G. Giorgi
    S.Y. Wang
    Journal of Global Optimization, 2004, 29 : 415 - 424
  • [36] Inclusions and the approximate identities of the generalized grand Lebesgue spaces
    Gurkanli, A. Turan
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (06) : 3195 - 3203
  • [37] Hardy type inequalities in generalized grand Lebesgue spaces
    Restrepo, Joel E.
    Suragan, Durvudkhan
    ADVANCES IN OPERATOR THEORY, 2021, 6 (02)
  • [38] DUALITY OF WEIGHTED BERGMAN SPACES WITH SMALL EXPONENTS
    Perala, Antti
    Rattya, Jouni
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2017, 42 (02) : 621 - 626
  • [39] Boyd Indices in Generalized Grand Lebesgue Spaces and Applications
    Maria Rosaria Formica
    Raffaella Giova
    Mediterranean Journal of Mathematics, 2015, 12 : 987 - 995
  • [40] Hardy type inequalities in generalized grand Lebesgue spaces
    Joel E. Restrepo
    Durvudkhan Suragan
    Advances in Operator Theory, 2021, 6