Minimal proper interval completions

被引:0
|
作者
Rapaport, Ivan [1 ,2 ]
Suchan, Karol [3 ,4 ]
Todinca, Ioan [3 ]
机构
[1] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[2] Univ Chile, Ctr Modelamiento Matemat, Santiago, Chile
[3] Univ Orleans, LIFO, F-45067 Orleans 2, France
[4] AGH Univ Sci & Technol, Fac Appl Math, Dept Discrete Math, Krakow, Poland
来源
GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE | 2006年 / 4271卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given an arbitrary graph G = (V, E) and a proper interval graph H = (V, F) with E subset of F we say that H is a proper interval completion of G. The graph H is called a minimal proper interval completion of G if, for any sandwich graph H' = (V, F') with E subset of F' subset of F, H' is not a proper interval graph. In this paper we give a O(n + m) time algorithm computing a minimal proper interval completion of an arbitrary graph. The output is a proper interval model of the completion.
引用
收藏
页码:217 / +
页数:3
相关论文
共 50 条
  • [41] New Characterizations of Proper Interval Bigraphs and Proper Circular Arc Bigraphs
    Das, Ashok Kumar
    Chakraborty, Ritapa
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS (CALDAM 2015), 2015, 8959 : 117 - 125
  • [42] Minimal Proper Quasifields with Additional Conditions
    Kravtsova, Olga, V
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2020, 13 (01): : 104 - 113
  • [43] On the on-line coloring of unit interval graphs with proper interval representation
    Curbelo, Israel R.
    Malko, Hannah R.
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2025, 27 (02):
  • [46] A Subexponential Parameterized Algorithm for Proper Interval Completion
    Bliznets, Ivan
    Fomin, Fedor V.
    Pilipczuk, Marcin
    Pilipczuk, Michal
    ALGORITHMS - ESA 2014, 2014, 8737 : 173 - 184
  • [47] A POLYNOMIAL KERNEL FOR PROPER INTERVAL VERTEX DELETION
    Fomin, Fedor V.
    Saurabh, Saket
    Villanger, Yngve
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (04) : 1964 - 1976
  • [48] A NEW CHARACTERIZATION OF PROPER INTERVAL-GRAPHS
    JACKOWSKI, Z
    DISCRETE MATHEMATICS, 1992, 105 (1-3) : 103 - 109
  • [49] The Roberts characterization of proper and unit interval graphs
    Gardi, Frederic
    DISCRETE MATHEMATICS, 2007, 307 (22) : 2906 - 2908
  • [50] Weakly toll convexity and proper interval graphs
    Dourado, Mitre C.
    Gutierrez, Marisa
    Protti, Fabio
    Tondato, Silvia
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2024, 26 (02):