Minimal proper interval completions

被引:0
|
作者
Rapaport, Ivan [1 ,2 ]
Suchan, Karol [3 ,4 ]
Todinca, Ioan [3 ]
机构
[1] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[2] Univ Chile, Ctr Modelamiento Matemat, Santiago, Chile
[3] Univ Orleans, LIFO, F-45067 Orleans 2, France
[4] AGH Univ Sci & Technol, Fac Appl Math, Dept Discrete Math, Krakow, Poland
来源
GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE | 2006年 / 4271卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given an arbitrary graph G = (V, E) and a proper interval graph H = (V, F) with E subset of F we say that H is a proper interval completion of G. The graph H is called a minimal proper interval completion of G if, for any sandwich graph H' = (V, F') with E subset of F' subset of F, H' is not a proper interval graph. In this paper we give a O(n + m) time algorithm computing a minimal proper interval completion of an arbitrary graph. The output is a proper interval model of the completion.
引用
收藏
页码:217 / +
页数:3
相关论文
共 50 条
  • [21] On Theta Pairs and Theta Completions for Proper Subalgebras in Leibniz Algebras
    Leila Goudarzi
    Zahra Riyahi
    Bulletin of the Iranian Mathematical Society, 2021, 47 : 1505 - 1512
  • [22] Proper Interval Vertex Deletion
    van 't Hof, Pim
    Villanger, Yngve
    ALGORITHMICA, 2013, 65 (04) : 845 - 867
  • [23] Proper Interval Vertex Deletion
    Villanger, Yngve
    PARAMETERIZED AND EXACT COMPUTATION, 2010, 6478 : 228 - 238
  • [24] Proper Interval Vertex Deletion
    Pim van ’t Hof
    Yngve Villanger
    Algorithmica, 2013, 65 : 845 - 867
  • [25] Separator Theorems for Interval Graphs and Proper Interval Graphs
    Panda, B. S.
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS (CALDAM 2015), 2015, 8959 : 101 - 110
  • [26] Induced Subgraph Isomorphism on Interval and Proper Interval Graphs
    Heggernes, Pinar
    Meister, Daniel
    Villanger, Yngve
    ALGORITHMS AND COMPUTATION, PT 2, 2010, 6507 : 399 - +
  • [27] Continuous completions of triangular norms known on a subregion of the unit interval
    Mesiarova-Zemankova, Andrea
    FUZZY SETS AND SYSTEMS, 2017, 308 : 27 - 41
  • [28] MINIMAL INTERVAL EXTENSIONS
    HABIB, M
    MORVAN, M
    POUZET, M
    RAMPON, JX
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 313 (13): : 893 - 898
  • [29] On Partitioning Interval Graphs into Proper Interval Subgraphs and Related Problems
    Gardi, Frederic
    JOURNAL OF GRAPH THEORY, 2011, 68 (01) : 38 - 54
  • [30] A note on the unit interval number and proper interval number of graphs
    Raychaudhuri, A
    ARS COMBINATORIA, 2000, 57 : 83 - 86