Minimal proper interval completions

被引:0
|
作者
Rapaport, Ivan [1 ,2 ]
Suchan, Karol [3 ,4 ]
Todinca, Ioan [3 ]
机构
[1] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[2] Univ Chile, Ctr Modelamiento Matemat, Santiago, Chile
[3] Univ Orleans, LIFO, F-45067 Orleans 2, France
[4] AGH Univ Sci & Technol, Fac Appl Math, Dept Discrete Math, Krakow, Poland
来源
GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE | 2006年 / 4271卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given an arbitrary graph G = (V, E) and a proper interval graph H = (V, F) with E subset of F we say that H is a proper interval completion of G. The graph H is called a minimal proper interval completion of G if, for any sandwich graph H' = (V, F') with E subset of F' subset of F, H' is not a proper interval graph. In this paper we give a O(n + m) time algorithm computing a minimal proper interval completion of an arbitrary graph. The output is a proper interval model of the completion.
引用
收藏
页码:217 / +
页数:3
相关论文
共 50 条
  • [31] Closed graphs are proper interval graphs
    Crupi, Marilena
    Rinaldo, Giancarlo
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2014, 22 (03): : 37 - 44
  • [32] Proper interval graphs and the guard problem
    Chen, CY
    Chang, CC
    Chang, GJ
    DISCRETE MATHEMATICS, 1997, 170 (1-3) : 223 - 230
  • [33] Proper interval vertex colorings of graphs
    Madaras, Tomas
    Matisova, Daniela
    Onderko, Alfred
    Sarosiova, Zuzana
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 477
  • [34] Secure domination in proper interval graphs
    Araki, Toru
    Miyazaki, Hiroka
    DISCRETE APPLIED MATHEMATICS, 2018, 247 : 70 - 76
  • [35] New characterizations of proper interval bigraphs
    Das, Ashok Kumar
    Chakraborty, Ritapa
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2015, 12 (01) : 47 - 53
  • [36] MINIMUM PROPER INTERVAL-GRAPHS
    GUTIERREZ, M
    OUBINA, L
    DISCRETE MATHEMATICS, 1995, 142 (1-3) : 77 - 85
  • [37] Semi-proper interval graphs
    Scheffler, Robert
    DISCRETE APPLIED MATHEMATICS, 2025, 360 : 22 - 41
  • [38] Recognition of probe proper interval graphs
    Nussbaum, Yahav
    DISCRETE APPLIED MATHEMATICS, 2014, 167 : 228 - 238
  • [39] Defensive domination in proper interval graphs
    Ekim, Tinaz
    Farley, Arthur
    Proskurowski, Andrzej
    Shalom, Mordechai
    DISCRETE APPLIED MATHEMATICS, 2023, 331 : 59 - 69
  • [40] Making arbitrary graphs transitively orientable: Minimal comparability completions
    Heggernes, Pinar
    Mancini, Federico
    Papadopoulos, Charis
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2006, 4288 : 419 - +