The initial layer problem and infinite Prandtl number limit of Rayleigh-Benard convection

被引:0
|
作者
Shi, Jianguo [1 ]
Wang, Ke
Wang, Shu
机构
[1] Huanghuai Coll, Dept Math, Zhumadian 463000, Henan Province, Peoples R China
[2] Beijing Univ Technol, Coll Appl Sci, Beijing 100022, Peoples R China
关键词
Boussinesq approximation; Rayleigh-Benard convection; initial layer; infinite Prandtl number limit; asymptotic expansions; singular perturbation; classical energy methods;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the Initial layer problem and infinite Prandtl number limit of Rayleigh-Benard convection are studied. For the case of ill-prepared initial data infinite Prandtl number limit of the Boussinesq approximation for Rayleigh-Benard convection is proven by using the asymptotic expansion methods of singular perturbation theory and the classical energy methods. An exact approximating solution with the zero order term and the 1st order term expansion is given and the convergence rates O(epsilon(3/2)) and O(epsilon(2)) are respectively obtained. This improves the result of X. M. Wang [Commun. Pure Appli. Math., LVII(2004), 1265-1282].
引用
收藏
页码:53 / 66
页数:14
相关论文
共 50 条
  • [21] Patterns and bifurcations in low-Prandtl-number Rayleigh-Benard convection
    Mishra, P. K.
    Wahi, P.
    Verma, M. K.
    [J]. EPL, 2010, 89 (04)
  • [22] Bifurcations and chaos in large-Prandtl number Rayleigh-Benard convection
    Paul, Supriyo
    Wahi, Pankaj
    Verma, Mahendra K.
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2011, 46 (05) : 772 - 781
  • [23] Nonlinear Dynamics of Low-Prandtl Number Rayleigh-Benard Convection
    Wahi, Pankaj
    Mishra, P. K.
    Paul, S.
    Verma, M. K.
    [J]. IUTAM SYMPOSIUM ON NONLINEAR DYNAMICS FOR ADVANCED TECHNOLOGIES AND ENGINEERING DESIGN, 2013, 32 : 123 - 136
  • [24] Turbulent Rayleigh-Benard convection in low Prandtl-number fluids
    Horanyi, S
    Krebs, L
    Müller, U
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1999, 42 (21) : 3983 - 4003
  • [25] Stationary statistical properties of Rayleigh-Benard convection at large Prandtl number
    Wang, Xiaoming
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2008, 61 (06) : 789 - 815
  • [27] CRITICAL RAYLEIGH NUMBER IN RAYLEIGH-BENARD CONVECTION
    Guo, Yan
    Han, Yongqian
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 2010, 68 (01) : 149 - 160
  • [28] Different routes to chaos in low Prandtl-number Rayleigh-Benard convection
    Yada, Nandukumar
    Kundu, Prosenjit
    Paul, Supriyo
    Pal, Pinaki
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2016, 81 : 261 - 267
  • [29] Effects of Prandtl number in quasi-two-dimensional Rayleigh-Benard convection
    Li, Xiao-Ming
    He, Ji-Dong
    Tian, Ye
    Hao, Peng
    Huang, Shi-Di
    [J]. JOURNAL OF FLUID MECHANICS, 2021, 915
  • [30] TIME-DEPENDENT RAYLEIGH-BENARD CONVECTION IN LOW PRANDTL NUMBER FLUIDS
    MENEGUZZI, M
    SULEM, C
    SULEM, PL
    THUAL, O
    [J]. LECTURE NOTES IN PHYSICS, 1985, 230 : 148 - 160