Stationary statistical properties of Rayleigh-Benard convection at large Prandtl number

被引:29
|
作者
Wang, Xiaoming [1 ]
机构
[1] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
关键词
D O I
10.1002/cpa.20214
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This is the third in a series of our study of Rayleigh-Benard convection at large Prandtl number. Here we investigate whether stationary statistical properties of the Boussinesq system for Rayleigh-Benard convection at large Prandtl number are related to those of the infinite Prandtl number model for convection that is formally derived from the Boussinesq system via setting the Prandtl number to infinity. We study asymptotic behavior of stationary statistical solutions, or invariant measures, to the Boussinesq system for Rayleigh-Benard convection at large Prandtl number. In particular, we show that the invariant measures of the Boussinesq system for Rayleigh-Benard convection converge to those of the infinite Prandtl number model for convection as the Prandtl number approaches infinity. We also show that the Nusselt number for the Boussinesq system (a specific statistical property of the system) is asymptotically bounded by the Nusselt number of the infinite Prandtl number model for convection at large Prandtl number. We discover that the Nusselt numbers are saturated by ergodic invariant measures. Moreover, we derive a new upper bound on the Nusselt number for the Boussinesq system at large Prandtl number of the form [GRAPHICS] which asymptotically agrees with the (optimal) upper bound on Nusselt number for the infinite Prandtl number model for convection. (c) 2007 Wiley Periodicals, Inc.
引用
收藏
页码:789 / 815
页数:27
相关论文
共 50 条