Patterns and bifurcations in low-Prandtl-number Rayleigh-Benard convection

被引:22
|
作者
Mishra, P. K. [1 ]
Wahi, P. [2 ]
Verma, M. K. [1 ]
机构
[1] Indian Inst Technol, Dept Phys, Kanpur 208016, Uttar Pradesh, India
[2] Indian Inst Technol, Dept Mech Engn, Kanpur 208016, Uttar Pradesh, India
关键词
STRESS-FREE BOUNDARIES; NUMERICAL-SIMULATION; TRANSITION; FLUID; ROLLS; THRESHOLD; DYNAMICS;
D O I
10.1209/0295-5075/89/44003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a detailed bifurcation structure and associated flow patterns for low-Prandtl-number (P = 0.0002, 0.002, 0.005, 0.02) Rayleigh-Benard convection near its onset. We use both direct numerical simulations and a 30-mode low-dimensional model for this study. We observe that low-Prandtl-number (low-P) convection exhibits similar patterns and chaos as zero-P convection (Pal P. et al., EPL, 87 (2009) 04003) namely squares, asymmetric squares, oscillating asymmetric squares, relaxation oscillations, and chaos. At the onset of convection, low-P convective flows have stationary 2D rolls and associated stationary and oscillatory asymmetric squares in contrast to zero-P convection where chaos appears at the onset itself. The range of Rayleigh number for which stationary 2D rolls exist decreases rapidly with decreasing Prandtl number. Our results are in qualitative agreement with results reported earlier. Copyright (C) EPLA, 2010
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Homoclinic bifurcations in low-Prandtl-number Rayleigh-Benard convection with uniform rotation
    Maity, P.
    Kumar, K.
    Pal, P.
    [J]. EPL, 2013, 103 (06)
  • [2] Turbulence in rotating Rayleigh-Benard convection in low-Prandtl-number fluids
    Pharasi, Hirdesh K.
    Kannan, Rahul
    Kumar, Krishna
    Bhattacharjee, Jayanta K.
    [J]. PHYSICAL REVIEW E, 2011, 84 (04):
  • [3] Oscillatory instability and fluid patterns in low-Prandtl-number Rayleigh-Benard convection with uniform rotation
    Pharasi, Hirdesh K.
    Kumar, Krishna
    [J]. PHYSICS OF FLUIDS, 2013, 25 (10)
  • [4] Thermal boundary layer dynamics in low-Prandtl-number Rayleigh-Benard convection
    Kim, Nayoung
    Schindler, Felix
    Vogt, Tobias
    Eckert, Sven
    [J]. JOURNAL OF FLUID MECHANICS, 2024, 994
  • [5] Low-Prandtl-number Rayleigh-Benard convection with stress-free boundaries
    Dan, Surajit
    Pal, Pinaki
    Kumar, Krishna
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2014, 87 (11):
  • [6] Flow reversals in low-Prandtl-number Rayleigh-Benard convection controlled by horizontal circulations
    Yanagisawa, Takatoshi
    Hamano, Yozo
    Sakuraba, Ataru
    [J]. PHYSICAL REVIEW E, 2015, 92 (02):
  • [7] Bifurcations and chaos in large-Prandtl number Rayleigh-Benard convection
    Paul, Supriyo
    Wahi, Pankaj
    Verma, Mahendra K.
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2011, 46 (05) : 772 - 781
  • [8] Instabilities and chaos in low-Prandtl number rayleigh-Benard convection
    Nandukumar, Yada
    Pal, Pinaki
    [J]. COMPUTERS & FLUIDS, 2016, 138 : 61 - 66
  • [9] Nonlinear Dynamics of Low-Prandtl Number Rayleigh-Benard Convection
    Wahi, Pankaj
    Mishra, P. K.
    Paul, S.
    Verma, M. K.
    [J]. IUTAM SYMPOSIUM ON NONLINEAR DYNAMICS FOR ADVANCED TECHNOLOGIES AND ENGINEERING DESIGN, 2013, 32 : 123 - 136
  • [10] Turbulent Rayleigh-Benard convection in low Prandtl-number fluids
    Horanyi, S
    Krebs, L
    Müller, U
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1999, 42 (21) : 3983 - 4003