Very Short-Term Prediction of Wind Farm Power: An Advanced Hybrid Intelligent Approach

被引:0
|
作者
Peri, Ramya M. [1 ]
Mandal, Paras [2 ]
Hague, Ashraf U. [3 ]
Tseng, Bill [1 ]
机构
[1] Univ Texas El Paso, Dept IMSE, El Paso, TX 79968 USA
[2] Univ Texas El Paso, Dept Elect & Comp Engn, El Paso, TX 79968 USA
[3] Teshmont Consultants LP, Power Study Grp, Calgary, AB, Canada
关键词
Emotional brain; emotional neural networks; similar day method; very short-term wind power forecasting; wavelet transform;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a new hybrid intelligent technique for very short-term wind power forecasting (VSWPF) based on the combination of wavelet transform (WT), similar day (SD) method, and emotional neural networks (ENN), i.e., WT+SD+ENN. The forecasting procedure using the proposed hybrid WT+SD+ENN intelligent model involves the refinement of the forecasted output obtained from the SD method by an application of ENN. The predicting performance of the proposed hybrid model is compared with the benchmark persistence method and other hybrid intelligent models in terms of mean absolute percentage error (MAPE), mean absolute error (MAE) and root mean square error (RMSE).
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Short-Term Prediction of Wind Farm Power: A Data Mining Approach
    Kusiak, Andrew
    Zheng, Haiyang
    Song, Zhe
    [J]. IEEE TRANSACTIONS ON ENERGY CONVERSION, 2009, 24 (01) : 125 - 136
  • [2] Hybrid intelligent approach for short-term wind power forecasting in Portugal
    Catalao, J. P. S.
    Pousinho, H. M. I.
    Mendes, V. M. F.
    [J]. IET RENEWABLE POWER GENERATION, 2011, 5 (03) : 251 - 257
  • [3] A Hybrid Algorithm for Short-Term Wind Power Prediction
    Xiong, Zhenhua
    Chen, Yan
    Ban, Guihua
    Zhuo, Yixin
    Huang, Kui
    [J]. ENERGIES, 2022, 15 (19)
  • [4] Wind Power Short-Term Prediction by a Hybrid PSO-ANFIS Approach
    Pousinho, H. M. I.
    Catalao, J. P. S.
    Mendes, V. M. F.
    [J]. MELECON 2010: THE 15TH IEEE MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, 2010, : 955 - 960
  • [5] An Intelligent Approach to Short-Term Wind Power Prediction Using Deep Neural Networks
    Niksa-Rynkiewicz, Tacjana
    Stomma, Piotr
    Witkowska, Anna
    Rutkowska, Danuta
    Slowik, Adam
    Cpalka, Krzysztof
    Jaworek-Korjakowska, Joanna
    Kolendo, Piotr
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING RESEARCH, 2023, 13 (03) : 197 - 210
  • [6] Short-term prediction of wind power with a clustering approach
    Kusiak, Andrew
    Li, Wenyan
    [J]. RENEWABLE ENERGY, 2010, 35 (10) : 2362 - 2369
  • [7] Prediction Intervals for Short-Term Wind Farm Power Generation Forecasts
    Khosravi, Abbas
    Nahavandi, Saeid
    Creighton, Doug
    [J]. IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2013, 4 (03) : 602 - 610
  • [8] Very Short-term Wind Speed Prediction of a Wind Farm Based on Artificial Neural Network
    Ma, Rui
    Hu, Shuju
    Xu, Honghua
    [J]. PROGRESS IN RENEWABLE AND SUSTAINABLE ENERGY, PTS 1 AND 2, 2013, 608-609 : 677 - 682
  • [9] A hybrid PSO-ANFIS approach for short-term wind power prediction in Portugal
    Pousinho, H. M. I.
    Mendes, V. M. F.
    Catalao, J. P. S.
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2011, 52 (01) : 397 - 402
  • [10] Very Short Term Wind Power Prediction: A Data Mining Approach
    Negnevitsky, A.
    Johnson, P.
    [J]. 2008 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, VOLS 1-11, 2008, : 1594 - +