Hybrid intelligent approach for short-term wind power forecasting in Portugal

被引:56
|
作者
Catalao, J. P. S. [1 ,2 ]
Pousinho, H. M. I. [1 ]
Mendes, V. M. F. [3 ]
机构
[1] Univ Beira Interior, Dept Electromech Engn, P-6201001 R Fonte Do Lameiro, Covilha, Portugal
[2] Inst Super Tecn, Ctr Innovat Elect & Energy Engn, P-1049001 Lisbon, Portugal
[3] Inst Super Engn Lisboa, Dept Elect Engn & Automat, P-1950062 Lisbon, Portugal
关键词
NEURAL-NETWORK APPROACH; WAVELET TRANSFORM; ARIMA MODELS; MARKET; SPEED; GENERATION; PREDICTION; RESOURCE; SYSTEMS; PRICES;
D O I
10.1049/iet-rpg.2009.0155
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges because of its intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges. In this study, a hybrid intelligent approach is proposed for short-term wind power forecasting in Portugal. The proposed approach is based on the wavelet transform and a hybrid of neural networks and fuzzy logic. Results from a real-world case study are presented. A thorough comparison is carried out, taking into account the results obtained with other approaches. Conclusions are duly drawn.
引用
收藏
页码:251 / 257
页数:7
相关论文
共 50 条
  • [1] Hybrid Wavelet-PSO-ANFIS Approach for Short-Term Wind Power Forecasting in Portugal
    Catalao, J. P. S.
    Pousinho, H. M. I.
    Mendes, V. M. F.
    [J]. 2011 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING, 2011,
  • [2] Hybrid Wavelet-PSO-ANFIS Approach for Short-Term Wind Power Forecasting in Portugal
    Catalao, J. P. S.
    Pousinho, H. M. I.
    Mendes, V. M. F.
    [J]. IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2011, 2 (01) : 50 - 59
  • [3] An artificial neural network approach for short-term wind power forecasting in Portugal
    Catalao, J. P. S.
    Pousinho, H. M. I.
    Mendes, V. M. F.
    [J]. ENGINEERING INTELLIGENT SYSTEMS FOR ELECTRICAL ENGINEERING AND COMMUNICATIONS, 2009, 17 (01): : 5 - 11
  • [4] Extended Hybrid Wind Power Forecasting Approach to Short-Term Decisions
    Osorio, Gerardo J.
    Lotfi, Mohamed
    Campos, Vasco M. A.
    Catalao, Joao P. S.
    [J]. 2020 20TH IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2020 4TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE), 2020,
  • [5] Short-term wind power forecasting and uncertainty analysis using a hybrid intelligent method
    Huang, Chao-Ming
    Kuo, Chung-Jen
    Huang, Yann-Chang
    [J]. IET RENEWABLE POWER GENERATION, 2017, 11 (05) : 678 - 687
  • [6] A Hybrid Approach for Short-Term Forecasting of Wind Speed
    Tatinati, Sivanagaraja
    Veluvolu, Kalyana C.
    [J]. SCIENTIFIC WORLD JOURNAL, 2013,
  • [7] Hybrid Approach for Short Term Wind Power Forecasting
    Reddy, Vasanth
    Verma, Samidha Mridul
    Verma, Kusum
    Kumar, Rajesh
    [J]. 2018 9TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2018,
  • [8] A hybrid PSO-ANFIS approach for short-term wind power prediction in Portugal
    Pousinho, H. M. I.
    Mendes, V. M. F.
    Catalao, J. P. S.
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2011, 52 (01) : 397 - 402
  • [9] Short-Term Wind Power Forecasting Using the Hybrid Method
    Chang, Wen-Yeau
    [J]. INTERNATIONAL CONFERENCE ON FRONTIERS OF ENVIRONMENT, ENERGY AND BIOSCIENCE (ICFEEB 2013), 2013, : 62 - 67
  • [10] Short term wind power forecasting using hybrid intelligent systems
    Negnevitsky, M.
    Johnson, P.
    Santoso, S.
    [J]. 2007 IEEE POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1-10, 2007, : 715 - +