A hybrid PSO-ANFIS approach for short-term wind power prediction in Portugal

被引:117
|
作者
Pousinho, H. M. I. [1 ]
Mendes, V. M. F. [2 ]
Catalao, J. P. S. [1 ,3 ]
机构
[1] Univ Beira Interior, Dept Electromech Engn, P-6201001 Covilha, Portugal
[2] Inst Super Engn Lisboa, Dept Elect Engn & Automat, P-1950062 Lisbon, Portugal
[3] Univ Tecn Lisboa, Inst Super Tecn, Ctr Innovat Elect & Energy Engn, P-1049001 Lisbon, Portugal
关键词
Wind power; Prediction; Swarm optimization; Neuro-fuzzy; NEURAL-NETWORK APPROACH; SPEED; SYSTEM;
D O I
10.1016/j.enconman.2010.07.015
中图分类号
O414.1 [热力学];
学科分类号
摘要
The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Wind power prediction plays a key role in tackling these challenges. The contribution of this paper is to propose a new hybrid approach, combining particle swarm optimization and adaptive-network-based fuzzy inference system, for short-term wind power prediction in Portugal. Significant improvements regarding forecasting accuracy are attainable using the proposed approach, in comparison with the results obtained with five other approaches. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:397 / 402
页数:6
相关论文
共 50 条
  • [1] Wind Power Short-Term Prediction by a Hybrid PSO-ANFIS Approach
    Pousinho, H. M. I.
    Catalao, J. P. S.
    Mendes, V. M. F.
    MELECON 2010: THE 15TH IEEE MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, 2010, : 955 - 960
  • [2] A PSO-ANFIS based Hybrid Approach for Short Term PV Power Prediction in Microgrids
    Semero, Yordanos Kassa
    Zheng, Dehua
    Zhang, Jianhua
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2018, 46 (01) : 95 - 103
  • [3] Hybrid Wavelet-PSO-ANFIS Approach for Short-Term Wind Power Forecasting in Portugal
    Catalao, J. P. S.
    Pousinho, H. M. I.
    Mendes, V. M. F.
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2011, 2 (01) : 50 - 59
  • [4] Hybrid Wavelet-PSO-ANFIS Approach for Short-Term Wind Power Forecasting in Portugal
    Catalao, J. P. S.
    Pousinho, H. M. I.
    Mendes, V. M. F.
    2011 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING, 2011,
  • [5] A Double-stage Hierarchical Hybrid PSO-ANFIS Model for Short-term Wind Power Forecasting
    Li, Han
    Eseye, Abinet Tesfaye
    Zhang, Jianhua
    Zheng, Dehua
    2017 NINTH ANNUAL IEEE GREEN TECHNOLOGIES CONFERENCE (GREENTECH 2017), 2017, : 342 - 349
  • [6] Short-term electricity prices forecasting in a competitive market by a hybrid PSO-ANFIS approach
    Pousinho, H. M. I.
    Mendes, V. M. F.
    Catalao, J. P. S.
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2012, 39 (01) : 29 - 35
  • [7] Wind power prediction analysis by ANFIS, GA-ANFIS and PSO-ANFIS
    Kumar, Neeraj
    Sudha, K.
    Tharani, Kusum
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2022, 43 (03): : 481 - 486
  • [8] Hybrid intelligent approach for short-term wind power forecasting in Portugal
    Catalao, J. P. S.
    Pousinho, H. M. I.
    Mendes, V. M. F.
    IET RENEWABLE POWER GENERATION, 2011, 5 (03) : 251 - 257
  • [9] Wind turbine power output very short-term forecast: A comparative study of data clustering techniques in a PSO-ANFIS model
    Adedeji, Paul A.
    Akinlabi, Stephen
    Madushele, Nkosinathi
    Olatunji, Obafemi O.
    Journal of Cleaner Production, 2020, 254
  • [10] Wind turbine power output very short-term forecast: A comparative study of data clustering techniques in a PSO-ANFIS model
    Adedeji, Paul A.
    Akinlabi, Stephen
    Madushele, Nkosinathi
    Olatunji, Obafemi O.
    JOURNAL OF CLEANER PRODUCTION, 2020, 254