A Hybrid Algorithm for Short-Term Wind Power Prediction

被引:6
|
作者
Xiong, Zhenhua [1 ]
Chen, Yan [1 ,2 ]
Ban, Guihua [1 ]
Zhuo, Yixin [3 ]
Huang, Kui [3 ]
机构
[1] Guangxi Univ, Sch Comp & Elect Informat, Nanning 530004, Peoples R China
[2] Guangxi Key Lab Multimedia Commun & Network Techn, Nanning 530004, Peoples R China
[3] Dispatch & Control Ctr Guangxi Power Grid, Nanning 530023, Peoples R China
关键词
shuffled frog leaping algorithm (SFLA); back propagation neural network (BPNN); root mean square propagation (RMSProp); artificial neural network (ANN); wind power forecasting; short term predict; MODEL; SYSTEMS;
D O I
10.3390/en15197314
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate and effective wind power prediction plays an important role in wind power generation, distribution, and management. Inthis paper, a hybrid algorithm based on gradient descent and meta-heuristic optimization is designed to improve the accuracy of prediction and reduce the computational burden. The hybrid algorithm includes three steps: in the first step, we use the gradient descent algorithm to get the initial parameters. Secondly, we input the initial parameters into the meta-heuristic optimization algorithm to search for the "best parameters" (high-quality inferior solutions). Finally, we input optimized parameters into the RMSProp optimization algorithm and conduct gradient descent again to find a better solution. We used 2021 wind power data from Guangxi, China for the experiment. The results show that the hybrid prediction algorithm has better performance than the traditional Back Propagation (BP) in accuracy, stability, and efficiency.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Hybrid Short-Term Wind Power Prediction Based on Markov Chain
    Zhou, Liangsong
    Zhou, Xiaotian
    Liang, Hao
    Huang, Mutao
    Li, Yi
    [J]. FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [2] Hybrid Forecasting Model for Short-Term Wind Power Prediction Using Modified Long Short-Term Memory
    Son, Namrye
    Yang, Seunghak
    Na, Jeongseung
    [J]. ENERGIES, 2019, 12 (20)
  • [3] VMD-CAT: A hybrid model for short-term wind power prediction
    Zheng, Huan
    Hu, Zhenda
    Wang, Xuguang
    Ni, Junhong
    Cui, Mengqi
    [J]. ENERGY REPORTS, 2023, 9 : 199 - 211
  • [4] Wind Power Short-Term Prediction by a Hybrid PSO-ANFIS Approach
    Pousinho, H. M. I.
    Catalao, J. P. S.
    Mendes, V. M. F.
    [J]. MELECON 2010: THE 15TH IEEE MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, 2010, : 955 - 960
  • [5] VMD-CAT: A hybrid model for short-term wind power prediction
    Zheng, Huan
    Hu, Zhenda
    Wang, Xuguang
    Ni, Junhong
    Cui, Mengqi
    [J]. ENERGY REPORTS, 2023, 9 : 199 - 211
  • [6] Short-term Prediction Models for Wind Speed and Wind Power
    Bai, Guangxing
    Ding, Yanwu
    Yildirim, Mehmet Bayram
    Ding, Yan-Hong
    [J]. 2014 2ND INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2014, : 180 - 185
  • [7] A hybrid technique for short-term wind speed prediction
    Hu, Jianming
    Wang, Jianzhou
    Ma, Kailiang
    [J]. ENERGY, 2015, 81 : 563 - 574
  • [8] Short-term Wind Speed Prediction with Ensemble Algorithm
    Long, Yitao
    Zhang, Runfeng
    [J]. 2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 6192 - 6196
  • [9] A hybrid strategy of short term wind power prediction
    Peng, Huaiwu
    Liu, Fangrui
    Yang, Xiaofeng
    [J]. RENEWABLE ENERGY, 2013, 50 : 590 - 595
  • [10] Short-term wind power prediction and error analysis
    Ma, Rui
    Wang, Lingling
    Hu, Shuju
    [J]. RENEWABLE ENERGY AND ENVIRONMENTAL TECHNOLOGY, PTS 1-6, 2014, 448-453 : 1851 - 1857