Hybrid Short-Term Wind Power Prediction Based on Markov Chain

被引:3
|
作者
Zhou, Liangsong [1 ]
Zhou, Xiaotian [2 ]
Liang, Hao [2 ]
Huang, Mutao [1 ]
Li, Yi [3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Elect & Elect Engn, Wuhan, Peoples R China
[2] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB, Canada
[3] Univ Washington, Coll Engn, Seattle, WA USA
关键词
wind power prediction; combined model; Markov chain; chaotic time series; data-driven; NEURAL-NETWORK; SPEED;
D O I
10.3389/fenrg.2022.899692
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This article proposes a combined prediction method based on the Markov chain to realize precise short-term wind power predictions. First, three chaotic models are proposed for the prediction of chaotic time series, which can master physical principles in wind power processes and guide long-term prediction. Then, considering a mechanism switching between different physical models via a Markov chain, a combined model is constructed. Finally, the industrial data from a Chinese wind farm were taken as a study case, and the results validated the feasibility and superiority of the proposed prediction method.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Short-term Prediction of Wind Power Output Based on Markov Chain
    Li, Dexin
    Lv, Xiangyu
    Song, Zhihui
    RENEWABLE ENERGY AND ENVIRONMENTAL TECHNOLOGY, PTS 1-6, 2014, 448-453 : 1789 - 1795
  • [2] A Hybrid Algorithm for Short-Term Wind Power Prediction
    Xiong, Zhenhua
    Chen, Yan
    Ban, Guihua
    Zhuo, Yixin
    Huang, Kui
    ENERGIES, 2022, 15 (19)
  • [3] A Short-Term Rolling Prediction-Correction Method for Wind Power Output Based on LSTM and Markov Chain
    Ren, Chen
    Gu, Jiping
    Tian, Shuxin
    Zhou, Jian
    Shi, Shanshan
    Fu, Yang
    2021 IEEE IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA (IEEE I&CPS ASIA 2021), 2021, : 574 - 580
  • [4] Short-Term Wind Power Prediction Based on a Hybrid Markov-Based PSO-BP Neural Network
    Wang, Chia-Hung
    Zhao, Qigen
    Tian, Rong
    ENERGIES, 2023, 16 (11)
  • [5] Short-Term Wind Power Prediction Based on CEEMDAN-SE and Bidirectional LSTM Neural Network with Markov Chain
    Liu, Yi
    He, Jun
    Wang, Yu
    Liu, Zong
    He, Lixun
    Wang, Yanyang
    ENERGIES, 2023, 16 (14)
  • [6] An Innovative Hybrid Algorithm for Very Short-Term Wind Speed Prediction Using Linear Prediction and Markov Chain Approach
    Kani, S. A. Pourmousavi
    Riahy, G. H.
    Mazhari, D.
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2011, 8 (02) : 147 - 162
  • [7] Short-term forecasting of categorical changes in wind power with Markov chain models
    Yoder, Megan
    Hering, Amanda S.
    Navidi, William C.
    Larson, Kristin
    WIND ENERGY, 2014, 17 (09) : 1425 - 1439
  • [8] Short-Term Prediction of Wind Power Based on Deep Long Short-Term Memory
    Qu Xiaoyun
    Kang Xiaoning
    Zhang Chao
    Jiang Shuai
    Ma Xiuda
    2016 IEEE PES ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2016, : 1148 - 1152
  • [9] Short-term wind power prediction based on combined long short-term memory
    Zhao, Yuyang
    Li, Lincong
    Guo, Yingjun
    Shi, Boming
    Sun, Hexu
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2024, 18 (05) : 931 - 940
  • [10] Short-Term Prediction of Wind Power Based on Adaptive LSTM
    Xu, Gang
    Xia, Lu
    2018 2ND IEEE CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION (EI2), 2018,